【iOS】——编译链接和动态链接器

news2025/1/11 14:52:14

前言

计算机语言分为机器语言:汇编语言,高级语言。
可以将高级语言分为两种:1,编译语言和解释型语言(直译式语言)。

img

编译型语言(一次性翻译)

编译型语言的程序只要经过编译器编译之后,每次运行程序都可以直接运行如oc,swift等

解释型语言(逐步进行解释执行)

解释语言编写的程序在每次运行时都需要通过解释器对程序进行动态解释和执行,如php,javascript等

编译链接过程:

1,预处理:macro 宏, import 头文件替换及处理其他的预编译指令,产生.i文件。(都是以#号开头)

2,编译:把预处理完的一系列文件进行一系列词法、语法、静态分析,并且优化后生成相应的汇编代码,产生.s文件;

3,汇编:汇编器将汇编代码生成机器指令,输出目标文件,产生.o文件(根据汇编指令和机器指令的对照表一一翻译就可以了);

4,链接:在一个文件中可能会到其他文件,因此,还需要将编译生成的目标文件和系统提供的文件组合到一起,这个过程就是链接。经过链接,最后生成可执行文件。

img

预处理(预编译)-> 产生.i文件

使用终端到main.m所在文件夹,使用命令:

clang -E main.m -o main.i

处理源代码文件中的以"#"开头的预编译指令:

  • "#define"删除并展开对应宏定义。

  • 处理所有的条件预编译指令。如#if/#ifdef/#else/#endif。

  • "#include/#import"包含的文件递归插入到此处。

  • 删除所有的注释"//或/**/"。

  • 添加行号和文件名标识。如“# 1 “main.m””,编译调试会用到。

编译 -> 产生.s文件

编译器:用来把源文件转换为更低级的语言,xcode使用的clang前端编译器的作用就是把源代码转化为更为低级的LLVM IR,这个LLVM IR是操作系统无关的,然后后端编译器LLVM通过这个中间语言来进行下一步二进制文件的产出。这要得益于LLVM的三层架构,假如你需要增加一种语言,只需要增加一种前端,如过你需要增加一种处理器架构,也只需要增加一种后端。

img

编译器前端:Clang编译器前端的任务是进行:语法分析,语义分析,生成中间代码(intermediate representation )。在这个过程中,会进行类型检查,如果发现错误或者警告会标注出来在哪一行。Clang 是一个C、C++、Objective-C和Objective-C++编程语言的编译器前端。

公用优化器:将生成的中间文件进行优化,去除冗余代码,进行结构优化。将优化后的中间代码再次转换,变成汇编语言,并再次进行优化,最后将各个文件代码转换为机器代码并链接。

编译器后端:

clang -S main.i -o main.s

编译过程也分为 词法分析 -> 语法分析 -> 静态分析 最后优化生成相应的汇编代码,得到.s文件

词法分析:源代码的字符序列分割成一个个token(关键字、标识符、字面量、特殊符号),比如把标识符放到符号表(静态链接那篇,重点讲符号表)。

语法分析:把词法分析生成的token生成抽象语法树 AST,此时运算符号的优先级确定了;有些符号具有多重含义也确定了,比如“*”是乘号还是对指针取内容;表达式不合法、括号不匹配等,都会报错。

静态分析:分析类型声明和匹配问题。比如整型和字符串相加,肯定会报错。

一般会把类型分为两类:动态的和静态的。动态的在运行时做检查,静态的在编译时做检查。以往,编写代码时可以向任意对象发送任何消息,在运行时,才会检查对象是否能够响应这些消息。由于只是在运行时做此类检查,所以叫做动态类型。

静态类型,是在编译时做检查。当在代码中使用 ARC 时,编译器在编译期间,会做许多的类型检查:因为编译器需要知道哪个对象该如何使用。

中间语言生成和优化:CodeGen根据AST自顶向下遍历逐步翻译成 LLVM IR,并且在编译期就可以确定的表达式进行优化,比如代码里t1=2+6,可以优化t1=8。(假如开启了bitcode,)

目标代码生成与优化:根据中间语言生成依赖具体机器的汇编语言。并优化汇编语言。这个过程中,假如有变量且定义在同一个编译单元里,那给这个变量分配空间,确定变量的地址。假如变量或者函数不定义在这个编译单元,得链接时候,才能确定地址。

汇编 -> 产生.o文件

clang -c main.s -o main.o

汇编器将上一步生成的可读的汇编代码转化为机器代码。最终产物就是 以 .o 结尾的目标文件。

链接

clang main.o -o main

这一阶段是将上个阶段生成的目标文件和引用的静态库链接起来,最终生成可执行文件(Mach-O),链接器解决了目标文件和库之间的链接。

动态库和静态库

动态库

动态库在程序编译时并不会被连接到目标代码中,而是在程序运行是才被载入。不同的应用程序如果调用相同的库,那么在内存里只需要有一份该共享库的实例,规避了空间浪费问题。动态库在程序运行时才被载入,也解决了静态库对程序的更新、部署和发布页会带来麻烦。用户只需要更新动态库即可,增量更新

  • 动态库把对一些库函数的链接载入推迟到程序运行的时期。
  • 可以实现进程之间的资源共享。(因此动态库也称为共享库)将一些程序升级变得简单。
  • 甚至可以真正做到链接载入完全由程序员在程序代码中控制(显示调用)。

静态库

在程序编译期的链接阶段,会将汇编生成的目标文件.o与引用到的库一起链接打包到可执行文件中。因此对应的链接方式称为静态链接。

  • 程序在运行时独立运行,不需要依赖外部库。

  • 静态库的调用通常比动态库的调用更快,因为不需要动态链接

  • 生成的可执行程序较大。如果多个使用静态链接生成的程序同时运行会占用大量的内存空间静态库一旦被编译链接到可执行文件中,想要更新或替换静态库的代码需要重新编译整个程序。

动态库和静态库的区别

静态库

  • 在编译时加载

  • 优点:代码装载和执行速度比动态库快。

  • 缺点:浪费内存和磁盘空间,模块更新困难。

    动态库

  • 在运行时加载

  • 优点:体积比静态库小很多,更加节省内存。

  • 缺点:代码装载和执行速度比静态库慢。

动态链接器

动态链接器的定义

动态链接器通常指的是dylddyld是它负责处理程序和动态库(dylib,动态链接库)之间的链接操作。dyld的主要任务是在程序启动时解析和加载所需的动态库,并解决这些库中的符号引用。

  1. 加载动态库dyld在程序启动时会加载指定的动态库。这包括系统库和应用程序可能依赖的任何第三方库。dyld能够延迟加载某些库,直到它们被实际使用,这有助于提高启动速度和内存效率。
  2. 解析符号: 当程序引用了一个动态库中的函数或变量时,dyld会查找并绑定这些符号到正确的地址。这个过程称为符号解析,它确保了程序能正确地访问库中的功能。
  3. 重定位dyld还负责重定位,这意味着它会调整库中的地址,以确保它们在进程的虚拟地址空间中正确放置。这通常涉及修改库内部的指针,使它们指向正确的内存位置。
  4. 缓存dyld使用缓存机制来存储已加载的库和已解析的符号,这样在后续的程序执行中就不需要重复加载或解析相同的内容,从而加快了程序的运行速度。
  5. 懒惰链接(Lazy Binding): 为了进一步提高性能,dyld可以采用懒惰链接策略,只在程序真正尝试访问一个库中的符号时才解析该符号。这避免了在程序启动时不必要的工作。
  6. 可执行文件和动态库的集成: 在iOS中,dyld不仅处理动态库,还负责加载和执行可执行文件本身。可执行文件中包含了dyld的启动信息,告诉它需要加载哪些库和如何初始化程序。
  7. 安全特性dyld还实现了一些安全特性,如ASLR(地址空间布局随机化),通过随机化库的加载地址来增加攻击者预测内存布局的难度,从而提高系统的安全性。

dyld2和dyld3的区别

dyld2dyld3dyld的不同版本,它们在功能和性能上有一些关键区别

下图为dyld2执行流程:

img

下图为dyld3执行流程:

img

相比于dyld 3,dyld 2的加载过程没有那么优化。它没有将工作分成两个阶段,而是直接在进程中完成所有任务,包括解析、查找依赖、映射文件、查找符号以及绑定和重定位等。这意味着这些操作可能会阻塞主线程,导致应用程序启动速度变慢。此外,由于没有生成和使用闭包,dyld 2也没有提供额外的安全性保障来防止恶意软件尝试修改或注入代码到正在运行的应用程序中。

dyld 3 包含这三个部分:

  • 进程外 Mach-O 分析器和编译器 (out-of-process mach-o parser
    由于 dyld 2 存在的问题,dyld 3 中将采用提前写入把结果数据缓存成文件的方式构成一个 lauch closure(可以理解为缓存文件)
  • 进程内引擎 执行 launch closure 处理 (in-process engine)
    验证”lauch closures“是否正确,映射dylib,执行main函数。此时,它不再需要分析mach-o header和执行符号查找,节省了不少时间。
  • launch closure 缓存服务 (launch closure cache )
    系统程序的 lauch closure 直接内置在 shared cache 中,而对于第三方APP,将在APP安装或更新时生成,这样就能保证 launch closure 总是在 APP 打开之前准备好。

dyld 3的符号缺失问题

dyld 2 默认采取的是 lazy symbol 的符号加载方式,但在 dyld 3中,在 App 启动之前,符号解析的结果已经在 lauch closure 内了,所以 lazy symbol 就不再需要。这时,如果有符号缺失的情况,APP 的行为会有不同:在 dyld 2 中,首次调用缺失符号时 APP 会 crash;而 dyld 3 中,缺失符号会导致 APP 一启动就会 crash。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1934522.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

关于dom4j主节点的xmlns无法写入的问题

由于最近需要做一个xml的文件,使用dom4j的时候发现了一个bug,就是我的xmlns根本无法写入到xml的头部标签中。 Element element document.addElement("test"); element.addAttribute("xmlns", "urn:Declaration:datamodel:sta…

小程序js 把链接转换为二维码

GitHub - Rookie-M/weapp-qrcode: weapp.qrcode.js 在 微信小程序 中,快速生成二维码 1.要下载上面地址的插件包 2.引用 import drawQrcode from ../../utils/weapp.qrcode.minonLoad(options) {let that thisconsole.log(JSON.parse(options.info))that.setData…

[word] word表格跨页断开实现教程 #职场发展#媒体

word表格跨页断开实现教程 选中整个word表格 单击鼠标右键,选择“表格属性”选项 切换至“行”标签,找到“允许跨页断行”选项 勾选上“允许跨页断行”,单击“确定”按钮,完成! word表格跨页断开实现教程的下载地址&a…

Memcached介绍与使用

引言 本文是笔者对Memcached这个高性能分布式缓存组件的实践案例,Memcached是一种高性能的分布式内存对象缓存系统,用于减轻数据库负载,加速动态Web应用,提高网站访问速度。它通过在内存中缓存数据和对象来减少读取数据库的次数&…

路由数据获取及封装方法

数据库设计 自联表 定义tree字段 public class LabelValue{public int label { get; set; }public string? value { get; set; }public List<LabelValue> children { get; set; }}获取路由方法 public Response<object> getMenuList() {Response<object>…

【python基础】基本数据类型

文章目录 一. Python基本数据类型1. 整数1.1. python的四种进制1.2. 数中的下划线 2. 浮点数3. 复数4. 布尔型5. 运算符5.1. 算术运算符5.2. 比较运算符5.3. 逻辑运算符5.4 运算符优先级 6. 常量 二. 注释三. Python之禅 一. Python基本数据类型 1. 整数 无长度限制&#xff1…

Java面试八股之什么是Redis的缓存更新

什么是Redis的缓存更新 Redis的缓存更新是指当缓存中的数据发生变化时&#xff0c;需要将这些变化同步到缓存中以保持数据的一致性。缓存更新的目的是确保缓存中的数据始终是最新的&#xff0c;以便用户可以获取到最新的数据。 常见的缓存更新策略包括&#xff1a; 直接覆盖…

OpenCv 如何在 Java 中使用

Java 项目引入 OpenCv 环境准备OpenCv介绍下载Maven 安装动态链接库 完成 环境准备 JDK 8 OpenCv 4.0.0 Maven 3.9 Windows 11 OpenCv 介绍 OpenCV&#xff08;开源计算机视觉库&#xff09;是一个功能强大的计算机视觉和机器学习库。它提供了广泛的工具和算法&#xff0c;用…

Kafka Producer之幂等性

文章目录 1. 启用幂等性2. 底层变化3. 数据不重复4. 数据有序 幂等性通过消耗时间和性能的方式&#xff0c;解决乱序和重复问题。 但是只能保证同一生产者在一个分区中的幂等性。 1. 启用幂等性 //创建producerHashMap<String, Object> config new HashMap<>();…

js vue axios post 数组请求参数获取转换, 后端go参数解析(gin框架)全流程示例

今天介绍的是前后端分离系统中的请求参数 数组参数的生成&#xff0c;api请求发送&#xff0c;到后端请求参数接收的全过程示例。 为何会有这个文章&#xff1a;后端同一个API接口同时处理单条或者多条数据&#xff0c;这样就要求我们在前端发送请求参数的时候需要统一将请…

精准营销从数据开始,Xinstall为App增长插上翅膀,安装数据尽在掌握!

在这个信息爆炸的时代&#xff0c;App市场竞争日益激烈&#xff0c;如何精准获取并分析安装数据&#xff0c;成为了每一个App开发者和运营者必须面对的重要课题。数据&#xff0c;是指导我们行动的灯塔&#xff0c;是优化策略、提升转化的关键。然而&#xff0c;对于许多开发者…

ElmoCha——体验最好的 web 内容 AI 总结插件

介绍 最近我用了很多网页总结产品&#xff0c;share 一下我认为最好用的 web 总结的 AI 插件。 当前体验最好的 web 内容总结插件&#xff1a;ElmoChat&#xff0c;由 Lepton 开发&#xff0c;可以生成网页总结、摘要、观点、相关问题。 非常方便的是&#xff0c;总结的内容提…

【学习笔记】无人机系统(UAS)的连接、识别和跟踪(二)-定义和缩写

引言 3GPP TS 23.256 技术规范&#xff0c;主要定义了3GPP系统对无人机&#xff08;UAV&#xff09;的连接性、身份识别、跟踪及A2X&#xff08;Aircraft-to-Everything&#xff09;服务的支持。 3GPP TS 23.256 技术规范&#xff1a; 【免费】3GPPTS23.256技术报告-无人机系…

【JVM基础03】——组成-详细介绍下Java中的堆

目录 1- 引言&#xff1a;堆1-1 堆是什么&#xff1f;(What)1-2 为什么用堆&#xff1f;堆的作用 (Why) 2- ⭐核心&#xff1a;堆的原理&#xff08;How&#xff09;2-1 堆的划分2-2 Java 7 与 Java 8 的堆区别 3- 小结&#xff1a;3-1 详细介绍下Java的堆&#xff1f;3-2 JVM …

【转盘案例-弹框-修改Bug-完成 Objective-C语言】

一、我们来看示例程序啊 1.旋转完了以后,它会弹一个框,这个框,是啥, Alert 啊,AlertView 也行, AlertView,跟大家说过,是吧,演示过的啊,然后,我们就用iOS9来做了啊,完成了以后,我们要去弹一个框, // 弹框 UIAlertController *alertController = [UIAlertContr…

CI/CD的node.js编译报错npm ERR! network request to https://registry.npmjs.org/

1、背景&#xff1a; 在维护paas云平台过程中&#xff0c;有研发反馈paas云平台上的CI/CD的前端流水线执行异常。 2、问题描述&#xff1a; 流水线执行的是前端编译&#xff0c;使用的是node.js环境。报错内容如下&#xff1a; 2024-07-18T01:23:04.203585287Z npm ERR! code E…

源码分析SpringCloud Gateway如何加载断言(predicates)与过滤器(filters)

我们今天的主角是Gateway网关&#xff0c;一听名字就知道它基本的任务就是去分发路由。根据不同的指定名称去请求各个服务&#xff0c;下面是Gateway官方的解释&#xff1a; Spring Cloud Gateway&#xff0c;其他的博主就不多说了&#xff0c;大家多去官网看看&#xff0c;只…

HarmonyOS NEXT零基础入门到实战-第一部分

构建节页面思路&#xff1a; 1、排版 (分析布局) 2、内容&#xff08;基础组件&#xff09; 3、美化&#xff08;属性方法&#xff09; 设计资源-svg图标 界面中展示图标 ->可以使用svg图标&#xff08;任意放大缩小不失真&#xff0c;可以改颜色&#xff09; 使用方式&a…

Re-labeling ImageNet(CVPR 2021, Naver)

paper&#xff1a;Re-labeling ImageNet: from Single to Multi-Labels, from Global to Localized Labels official implementation&#xff1a;GitHub - naver-ai/relabel_imagenet 背景 ImageNet 数据集是现代计算机视觉领域的重要基准&#xff0c;广泛用于图像分类模型的…

低代码中间件学习体验分享:业务系统的创新引擎

前言 星云低代码平台介绍 星云低代码中间件主要面向企业IT部门、软件实施部门的低代码开发平台&#xff0c;无需学习开发语言/技术框架&#xff0c;可视化开发PC网页/PC项目/小程序/安卓/IOS原生移动应用&#xff0c;低门槛&#xff0c;高效率。针对企业研发部门人员少&#…