代码
#include <iostream>
#include <list>
#include <CGAL/Simple_cartesian.h>
#include <CGAL/AABB_tree.h>
#include <CGAL/AABB_traits.h>
#include <CGAL/AABB_segment_primitive.h>
#include <CGAL/Polygon_2.h>
typedef CGAL::Simple_cartesian<double> K;
// custom point type
struct My_point {
double m_x;
double m_y;
double m_z;
My_point(const double x,
const double y,
const double z)
: m_x(x), m_y(y), m_z(z) {}
};
// custom triangle type with
// three pointers to points
struct My_triangle {
My_point* m_pa;
My_point* m_pb;
My_point* m_pc;
My_triangle(My_point* pa,
My_point* pb,
My_point* pc)
: m_pa(pa), m_pb(pb), m_pc(pc) {}
};
// the custom triangles are stored into a vector
typedef std::vector<My_triangle>::const_iterator Iterator;
// The following primitive provides the conversion facilities between
// the custom triangle and point types and the CGAL ones
struct My_triangle_primitive {
public:
// this is the type of data that the queries returns. For this example
// we imagine that, for some reasons, we do not want to store the iterators
// of the vector, but raw pointers. This is to show that the Id type
// does not have to be the same as the one of the input parameter of the
// constructor.
typedef const My_triangle* Id;
// CGAL types returned
typedef K::Point_3 Point; // CGAL 3D point type
typedef K::Triangle_3 Datum; // CGAL 3D triangle type
private:
Id m_pt; // this is what the AABB tree stores internally
public:
My_triangle_primitive() {} // default constructor needed
// the following constructor is the one that receives the iterators from the
// iterator range given as input to the AABB_tree
My_triangle_primitive(Iterator it)
: m_pt(&(*it)) {}
const Id& id() const { return m_pt; }
// utility function to convert a custom
// point type to CGAL point type.
Point convert(const My_point* p) const
{
return Point(p->m_x, p->m_y, p->m_z);
}
// on the fly conversion from the internal data to the CGAL types
Datum datum() const
{
return Datum(convert(m_pt->m_pa),
convert(m_pt->m_pb),
convert(m_pt->m_pc));
}
// returns a reference point which must be on the primitive
Point reference_point() const
{
return convert(m_pt->m_pa);
}
};
/*
自定义KDTree测试,点相交
*/
int testKDTree()
{
typedef CGAL::AABB_traits<K, My_triangle_primitive> My_AABB_traits;
typedef CGAL::AABB_tree<My_AABB_traits> MyTree;
typedef K::FT FT;
My_point a(1.0, 0.0, 0.0);
My_point b(0.0, 1.0, 0.0);
My_point c(0.0, 0.0, 1.0);
My_point d(0.0, 0.0, 0.0);
std::vector<My_triangle> triangles;
triangles.push_back(My_triangle(&a, &b, &c));
triangles.push_back(My_triangle(&a, &b, &d));
triangles.push_back(My_triangle(&a, &d, &c));
// constructs AABB tree
MyTree tree(triangles.begin(), triangles.end());
// counts #intersections
K::Ray_3 ray_query(K::Point_3(1.0, 0.0, 0.0), K::Point_3(0.0, 1.0, 0.0));
std::cout << tree.number_of_intersected_primitives(ray_query)
<< " intersections(s) with ray query" << std::endl;
// computes closest point
K::Point_3 point_query(2.0, 2.0, 2.0);
K::Point_3 closest_point = tree.closest_point(point_query);
std::cerr << "closest point is: " << closest_point << std::endl;
FT sqd = tree.squared_distance(point_query);
std::cout << "squared distance: " << sqd << std::endl;
return EXIT_SUCCESS;
/* 输出
3 intersections(s) with ray query
closest point is: 0.333333 0.333333 0.333333
*/
}
/*
光线追踪,面相交
*/
void testGlyph() {
typedef K::FT FT;
typedef K::Segment_3 Segment;
typedef K::Point_3 Point;
typedef std::list<Segment> SegmentRange;
typedef SegmentRange::const_iterator Iterator;
typedef CGAL::AABB_segment_primitive<K, Iterator> Primitive;
typedef CGAL::AABB_traits<K, Primitive> Traits;
typedef CGAL::AABB_tree<Traits> Tree;
typedef Tree::Point_and_primitive_id Point_and_primitive_id;
Point a(0.0, 0.0, 1);
Point b(2.0, 1.0, 1);
Point c(3.0, 4.0, 1);
Point d(1.0, 6.0, 1);
Point e(-1.0, 3.0, 1);
std::list<Segment> seg;
seg.push_back(Segment(a, b));
seg.push_back(Segment(b, c));
seg.push_back(Segment(c, d));
seg.push_back(Segment(d, e));
seg.push_back(Segment(e, a));
// constructs the AABB tree and the internal search tree for
// efficient distance computations.
Tree tree(seg.begin(), seg.end());
tree.build();
tree.accelerate_distance_queries();
// counts #intersections with a segment query
Segment segment_query(Point(1.0, 0.0, 1), Point(0.0, 7.0, 1));
std::cout << tree.number_of_intersected_primitives(segment_query)
<< " intersections(s) with segment" << std::endl;
// computes the closest point from a point query
Point point_query(1.5, 3.0, 1);
Point closest = tree.closest_point(point_query);
std::cerr << "closest point is: " << closest << std::endl;
Point_and_primitive_id id = tree.closest_point_and_primitive(point_query);
std::cout << id.second->source() << " " << id.second->target() << std::endl;
}
/*
测试布尔运算
*/
#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/Polygon_with_holes_2.h>
#include <CGAL/Polygon_set_2.h>
#include <CGAL/Boolean_set_operations_2.h>
#include <CGAL/Intersections_3/Line_3_Line_3.h>
//-----------------------------------------------------------------------------
// Pretty-print a CGAL polygon.
//
template<class Kernel, class Container>
void print_polygon(const CGAL::Polygon_2<Kernel, Container>& P)
{
typename CGAL::Polygon_2<Kernel, Container>::Vertex_const_iterator vit;
std::cout << "[ " << P.size() << " vertices:";
for (vit = P.vertices_begin(); vit != P.vertices_end(); ++vit)
std::cout << " (" << *vit << ')';
std::cout << " ]" << std::endl;
return;
}
//-----------------------------------------------------------------------------
// Pretty-print a polygon with holes.
//
template<class Kernel, class Container>
void print_polygon_with_holes
(const CGAL::Polygon_with_holes_2<Kernel, Container>& pwh)
{
if (!pwh.is_unbounded())
{
std::cout << "{ Outer boundary = ";
print_polygon(pwh.outer_boundary());
}
else
std::cout << "{ Unbounded polygon." << std::endl;
typename CGAL::Polygon_with_holes_2<Kernel, Container>::
Hole_const_iterator hit;
unsigned int k = 1;
std::cout << " " << pwh.number_of_holes() << " holes:" << std::endl;
for (hit = pwh.holes_begin(); hit != pwh.holes_end(); ++hit, ++k)
{
std::cout << " Hole #" << k << " = ";
print_polygon(*hit);
}
std::cout << " }" << std::endl;
return;
}
void testBoolOpeation() {
typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef Kernel::Point_2 Point_2;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef CGAL::Polygon_with_holes_2<Kernel> Polygon_with_holes_2;
typedef CGAL::Polygon_set_2<Kernel> Polygon_set_2;
typedef std::list<Polygon_with_holes_2> Pwh_list_2;
typedef CGAL::Line_3<K> Line;
typedef CGAL::Point_3<K> Point;
// Construct the two initial polygons and the clipping rectangle.
Polygon_2 P;
P.push_back(Point_2(0, 1));
P.push_back(Point_2(2, 0));
P.push_back(Point_2(1, 1));
P.push_back(Point_2(2, 2));
Polygon_2 Q;
Q.push_back(Point_2(3, 1));
Q.push_back(Point_2(1, 2));
Q.push_back(Point_2(2, 1));
Q.push_back(Point_2(1, 0));
Polygon_2 rect;
rect.push_back(Point_2(0, 0));
rect.push_back(Point_2(3, 0));
rect.push_back(Point_2(3, 2));
rect.push_back(Point_2(0, 2));
// Perform a sequence of operations.
Polygon_set_2 S;
S.insert(P);
S.join(Q); // Compute the union of P and Q.
S.complement(); // Compute the complement.
S.intersection(rect); // Intersect with the clipping rectangle.
// Print the result.
std::list<Polygon_with_holes_2> res;
std::list<Polygon_with_holes_2>::const_iterator it;
std::cout << "The result contains " << S.number_of_polygons_with_holes()
<< " components:" << std::endl;
S.polygons_with_holes(std::back_inserter(res));
for (it = res.begin(); it != res.end(); ++it) {
std::cout << "--> ";
print_polygon_with_holes(*it);
}
// 交集
if ((CGAL::do_intersect(P, Q)))
std::cout << "The two polygons intersect in their interior." << std::endl;
else
std::cout << "The two polygons do not intersect." << std::endl;
// union
// Compute the union of P and Q.
Polygon_with_holes_2 unionR;
if (CGAL::join(P, Q, unionR)) {
std::cout << "The union: ";
print_polygon_with_holes(unionR);
}
else
std::cout << "P and Q are disjoint and their union is trivial."
<< std::endl;
// Compute the intersection of P and Q.
CGAL::intersection(P, Q, std::back_inserter(res));
// Compute the symmetric difference of P and Q.
CGAL::symmetric_difference(P, Q, std::back_inserter(res));
// 直线相交
const Line l = Line(Point(0, 0, 0), Point(1, 2, 3));
const Line l_1 = Line(Point(0, 0, 0), Point(-3, -2, -1));
const CGAL::Object obj1 = CGAL::intersection(l, l_1);
}
/*
凸包检测
*/
#include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
#include <CGAL/point_generators_3.h>
#include <CGAL/Delaunay_triangulation_3.h>
#include <CGAL/Surface_mesh.h>
#include <CGAL/algorithm.h>
#include <CGAL/convex_hull_3_to_face_graph.h>
void testConvexHull() {
typedef CGAL::Exact_predicates_inexact_constructions_kernel K;
typedef K::Point_3 Point_3;
typedef CGAL::Delaunay_triangulation_3<K> Delaunay;
typedef Delaunay::Vertex_handle Vertex_handle;
typedef CGAL::Surface_mesh<Point_3> Surface_mesh;
CGAL::Random_points_in_sphere_3<Point_3> gen(100.0);
std::list<Point_3> points;
// generate 250 points randomly in a sphere of radius 100.0
// and insert them into the triangulation
std::copy_n(gen, 250, std::back_inserter(points));
Delaunay T;
T.insert(points.begin(), points.end());
std::list<Vertex_handle> vertices;
T.incident_vertices(T.infinite_vertex(), std::back_inserter(vertices));
std::cout << "This convex hull of the 250 points has "
<< vertices.size() << " points on it." << std::endl;
// remove 25 of the input points
std::list<Vertex_handle>::iterator v_set_it = vertices.begin();
for (int i = 0; i < 25; i++)
{
T.remove(*v_set_it);
v_set_it++;
}
//copy the convex hull of points into a polyhedron and use it
//to get the number of points on the convex hull
Surface_mesh chull;
CGAL::convex_hull_3_to_face_graph(T, chull);
std::cout << "After removal of 25 points, there are "
<< num_vertices(chull) << " points on the convex hull." << std::endl;
}
void test() {
testKDTree();
testGlyph();
testBoolOpeation();
testConvexHull();
}
输出
3 intersections(s) with ray query
closest point is: 0.333333 0.333333 0.333333
squared distance: 8.33333
2 intersections(s) with segment
closest point is: 2.55 2.65 1
2 1 1 3 4 1
The result contains 2 components:
--> { Outer boundary = [ 10 vertices: (2 2) (1 2) (0 2) (0 1) (0 0) (1 0) (2 0) (3 0) (3 1) (3 2) ]
1 holes:
Hole #1 = [ 12 vertices: (3 1) (1.66667 0.333333) (2 0) (1.5 0.25) (1 0) (1.33333 0.333333) (0 1) (1.33333 1.66667) (1 2) (1.5 1.75) (2 2) (1.66667 1.66667) ]
}
--> { Outer boundary = [ 4 vertices: (1 1) (1.5 0.5) (2 1) (1.5 1.5) ]
0 holes:
}
The two polygons intersect in their interior.
The union: { Outer boundary = [ 12 vertices: (1.33333 0.333333) (1 0) (1.5 0.25) (2 0) (1.66667 0.333333) (3 1) (1.66667 1.66667) (2 2) (1.5 1.75) (1 2) (1.33333 1.66667) (0 1) ]
1 holes:
Hole #1 = [ 4 vertices: (1.5 1.5) (2 1) (1.5 0.5) (1 1) ]
}
This convex hull of the 250 points has 88 points on it.
After removal of 25 points, there are 84 points on the convex hull.
GitHub - CGAL/cgal: The public CGAL repository, see the README below