STM32智能家居系统教程

news2025/1/10 21:32:54

目录

  1. 引言
  2. 环境准备
  3. 智能家居系统基础
  4. 代码实现:实现智能家居系统 4.1 数据采集模块 4.2 数据处理与控制模块 4.3 通信与网络系统实现 4.4 用户界面与数据可视化
  5. 应用场景:家居智能化管理
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

智能家居系统通过STM32嵌入式系统结合各种传感器、执行器和通信模块,实现对家居环境和设备的实时监控、自动控制和数据传输。本文将详细介绍如何在STM32系统中实现一个智能家居系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  1. 开发板:STM32F4系列或STM32H7系列开发板
  2. 调试器:ST-LINK V2或板载调试器
  3. 传感器:如温湿度传感器、光照传感器、烟雾传感器、人体红外传感器等
  4. 执行器:如继电器模块、电动窗帘、灯光控制器等
  5. 通信模块:如Wi-Fi模块、蓝牙模块
  6. 显示屏:如OLED显示屏
  7. 按键或旋钮:用于用户输入和设置
  8. 电源:电源适配器

软件准备

  1. 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  2. 调试工具:STM32 ST-LINK Utility或GDB
  3. 库和中间件:STM32 HAL库和FreeRTOS

安装步骤

  1. 下载并安装STM32CubeMX
  2. 下载并安装STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序

3. 智能家居系统基础

控制系统架构

智能家居系统由以下部分组成:

  1. 数据采集模块:用于采集温湿度、光照、烟雾等数据
  2. 数据处理与控制模块:对采集的数据进行处理和分析,生成控制信号
  3. 通信与网络系统:实现家居环境数据与服务器或其他设备的通信
  4. 显示系统:用于显示系统状态和家居环境数据
  5. 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过各种传感器采集家居环境数据,并实时显示在OLED显示屏上。系统通过数据处理和网络通信,实现对家居环境数据的监测和管理。用户可以通过按键或旋钮进行设置,并通过显示屏查看当前状态。

4. 代码实现:实现智能家居系统

4.1 数据采集模块

配置温湿度传感器

使用STM32CubeMX配置I2C接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "dht22.h"

I2C_HandleTypeDef hi2c1;

void I2C1_Init(void) {
    hi2c1.Instance = I2C1;
    hi2c1.Init.ClockSpeed = 100000;
    hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
    hi2c1.Init.OwnAddress1 = 0;
    hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
    hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
    hi2c1.Init.OwnAddress2 = 0;
    hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
    hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
    HAL_I2C_Init(&hi2c1);
}

void Read_Temperature_Humidity(float* temperature, float* humidity) {
    DHT22_ReadAll(temperature, humidity);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    I2C1_Init();
    DHT22_Init();

    float temperature, humidity;

    while (1) {
        Read_Temperature_Humidity(&temperature, &humidity);
        HAL_Delay(1000);
    }
}
配置光照传感器

使用STM32CubeMX配置ADC接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"

ADC_HandleTypeDef hadc1;

void ADC_Init(void) {
    __HAL_RCC_ADC1_CLK_ENABLE();

    ADC_ChannelConfTypeDef sConfig = {0};

    hadc1.Instance = ADC1;
    hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
    hadc1.Init.Resolution = ADC_RESOLUTION_12B;
    hadc1.Init.ScanConvMode = DISABLE;
    hadc1.Init.ContinuousConvMode = ENABLE;
    hadc1.Init.DiscontinuousConvMode = DISABLE;
    hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
    hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
    hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
    hadc1.Init.NbrOfConversion = 1;
    hadc1.Init.DMAContinuousRequests = DISABLE;
    hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
    HAL_ADC_Init(&hadc1);

    sConfig.Channel = ADC_CHANNEL_0;
    sConfig.Rank = 1;
    sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
    HAL_ADC_ConfigChannel(&hadc1, &sConfig);
}

uint32_t Read_Light_Intensity(void) {
    HAL_ADC_Start(&hadc1);
    HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);
    return HAL_ADC_GetValue(&hadc1);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    ADC_Init();

    uint32_t light_intensity;

    while (1) {
        light_intensity = Read_Light_Intensity();
        HAL_Delay(1000);
    }
}
配置烟雾传感器

使用STM32CubeMX配置ADC接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"

ADC_HandleTypeDef hadc2;

void ADC2_Init(void) {
    __HAL_RCC_ADC2_CLK_ENABLE();

    ADC_ChannelConfTypeDef sConfig = {0};

    hadc2.Instance = ADC2;
    hadc2.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
    hadc2.Init.Resolution = ADC_RESOLUTION_12B;
    hadc2.Init.ScanConvMode = DISABLE;
    hadc2.Init.ContinuousConvMode = ENABLE;
    hadc2.Init.DiscontinuousConvMode = DISABLE;
    hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
    hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
    hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
    hadc2.Init.NbrOfConversion = 1;
    hadc2.Init.DMAContinuousRequests = DISABLE;
    hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
    HAL_ADC_Init(&hadc2);

    sConfig.Channel = ADC_CHANNEL_1;
    sConfig.Rank = 1;
    sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
    HAL_ADC_ConfigChannel(&hadc2, &sConfig);
}

uint32_t Read_Smoke_Level(void) {
    HAL_ADC_Start(&hadc2);
    HAL_ADC_PollForConversion(&hadc2, HAL_MAX_DELAY);
    return HAL_ADC_GetValue(&hadc2);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    ADC2_Init();

    uint32_t smoke_level;

    while (1) {
        smoke_level = Read_Smoke_Level();
        HAL_Delay(1000);
    }
}
配置人体红外传感器

使用STM32CubeMX配置GPIO接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的GPIO引脚,设置为输入模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"

#define PIR_SENSOR_PIN GPIO_PIN_0
#define GPIO_PORT GPIOA

void GPIO_Init(void) {
    __HAL_RCC_GPIOA_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = PIR_SENSOR_PIN;
    GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}

uint8_t Read_PIR_Sensor(void) {
    return HAL_GPIO_ReadPin(GPIO_PORT, PIR_SENSOR_PIN);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIO_Init();

    uint8_t pir_status;

    while (1) {
        pir_status = Read_PIR_Sensor();
        HAL_Delay(1000);
    }
}

4.2 数据处理与控制模块

数据处理模块将传感器数据转换为可用于控制系统的数据,并进行必要的计算和分析。

家居环境控制算法

实现一个简单的家居环境控制算法,根据传感器数据控制继电器和灯光:

#define TEMP_THRESHOLD 30.0
#define SMOKE_THRESHOLD 300
#define LIGHT_THRESHOLD 500
#define PIR_DETECTED 1

void Process_Home_Data(float temperature, float humidity, uint32_t light_intensity, uint32_t smoke_level, uint8_t pir_status) {
    if (temperature > TEMP_THRESHOLD || smoke_level > SMOKE_THRESHOLD || pir_status == PIR_DETECTED) {
        // 打开继电器和灯光
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_SET); // 继电器
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_SET); // 灯光
    } else {
        // 关闭继电器和灯光
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, GPIO_PIN_RESET); // 继电器
        HAL_GPIO_WritePin(GPIOB, GPIO_PIN_1, GPIO_PIN_RESET); // 灯光
    }
}

void GPIOB_Init(void) {
    __HAL_RCC_GPIOB_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIOB_Init();
    ADC_Init();
    ADC2_Init();
    I2C1_Init();
    DHT22_Init();

    float temperature, humidity;
    uint32_t light_intensity, smoke_level;
    uint8_t pir_status;

    while (1) {
        light_intensity = Read_Light_Intensity();
        smoke_level = Read_Smoke_Level();
        Read_Temperature_Humidity(&temperature, &humidity);
        pir_status = Read_PIR_Sensor();

        Process_Home_Data(temperature, humidity, light_intensity, smoke_level, pir_status);

        HAL_Delay(1000);
    }
}

4.3 通信与网络系统实现

配置Wi-Fi模块

使用STM32CubeMX配置UART接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的UART引脚,设置为UART模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

#include "stm32f4xx_hal.h"
#include "usart.h"
#include "wifi_module.h"

UART_HandleTypeDef huart1;

void UART1_Init(void) {
    huart1.Instance = USART1;
    huart1.Init.BaudRate = 115200;
    huart1.Init.WordLength = UART_WORDLENGTH_8B;
    huart1.Init.StopBits = UART_STOPBITS_1;
    huart1.Init.Parity = UART_PARITY_NONE;
    huart1.Init.Mode = UART_MODE_TX_RX;
    huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
    huart1.Init.OverSampling = UART_OVERSAMPLING_16;
    HAL_UART_Init(&huart1);
}

void Send_Home_Data_To_Server(float temperature, float humidity, uint32_t light_intensity, uint32_t smoke_level, uint8_t pir_status) {
    char buffer[128];
    sprintf(buffer, "Temp: %.2f, Humidity: %.2f, Light: %lu, Smoke: %lu, PIR: %u",
            temperature, humidity, light_intensity, smoke_level, pir_status);
    HAL_UART_Transmit(&huart1, (uint8_t*)buffer, strlen(buffer), HAL_MAX_DELAY);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    UART1_Init();
    GPIOB_Init();
    ADC_Init();
    ADC2_Init();
    I2C1_Init();
    DHT22_Init();

    float temperature, humidity;
    uint32_t light_intensity, smoke_level;
    uint8_t pir_status;

    while (1) {
        light_intensity = Read_Light_Intensity();
        smoke_level = Read_Smoke_Level();
        Read_Temperature_Humidity(&temperature, &humidity);
        pir_status = Read_PIR_Sensor();

        Send_Home_Data_To_Server(temperature, humidity, light_intensity, smoke_level, pir_status);

        HAL_Delay(1000);
    }
}

4.4 用户界面与数据可视化

配置OLED显示屏

使用STM32CubeMX配置I2C接口:

  1. 打打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

首先,初始化OLED显示屏:

#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "oled.h"

void Display_Init(void) {
    OLED_Init();
}

然后实现数据展示函数,将家居环境数据展示在OLED屏幕上:

void Display_Data(float temperature, float humidity, uint32_t light_intensity, uint32_t smoke_level, uint8_t pir_status) {
    char buffer[32];
    sprintf(buffer, "Temp: %.2f C", temperature);
    OLED_ShowString(0, 0, buffer);
    sprintf(buffer, "Humidity: %.2f %%", humidity);
    OLED_ShowString(0, 1, buffer);
    sprintf(buffer, "Light: %lu", light_intensity);
    OLED_ShowString(0, 2, buffer);
    sprintf(buffer, "Smoke: %lu", smoke_level);
    OLED_ShowString(0, 3, buffer);
    sprintf(buffer, "PIR: %u", pir_status);
    OLED_ShowString(0, 4, buffer);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    I2C1_Init();
    Display_Init();
    GPIOB_Init();
    ADC_Init();
    ADC2_Init();
    I2C1_Init();
    DHT22_Init();

    float temperature, humidity;
    uint32_t light_intensity, smoke_level;
    uint8_t pir_status;

    while (1) {
        light_intensity = Read_Light_Intensity();
        smoke_level = Read_Smoke_Level();
        Read_Temperature_Humidity(&temperature, &humidity);
        pir_status = Read_PIR_Sensor();

        // 显示家居环境数据
        Display_Data(temperature, humidity, light_intensity, smoke_level, pir_status);

        HAL_Delay(1000);
    }
}

5. 应用场景:家居智能化管理

智能家居环境监测

智能家居系统可以用于家居环境监测,通过实时监测家居环境参数,实现自动控制,提高家居生活质量。

智能安防

在家居中,智能家居系统可以实现对烟雾、温度、人体活动等的实时监测和自动管理,提升家庭安全。

智能照明

智能家居系统可以用于智能照明,通过自动化控制和数据分析,实现照明的智能管理,提高能源利用效率。

智能家电控制

智能家居系统可以实现对家电设备的智能控制,提高家电设备的使用效率和便捷性。

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

6. 问题解决方案与优化

常见问题及解决方案

传感器数据不准确

确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。

解决方案:检查传感器与STM32之间的连接是否牢固,必要时重新焊接或更换连接线。同时,定期对传感器进行校准,确保数据准确。

家居环境数据处理不稳定

优化处理算法和硬件配置,减少数据处理的不稳定性,提高系统反应速度。

解决方案:优化处理算法,调整参数,减少振荡和超调。使用高精度传感器,提高数据采集的精度和稳定性。选择更高效的处理器,提高数据处理的响应速度。

数据传输失败

确保Wi-Fi模块与STM32的连接稳定,优化通信协议,提高数据传输的可靠性。

解决方案:检查Wi-Fi模块与STM32之间的连接是否牢固,必要时重新焊接或更换连接线。优化通信协议,减少数据传输的延迟和丢包率。选择更稳定的通信模块,提升数据传输的可靠性。

显示屏显示异常

检查I2C通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

解决方案:检查I2C引脚的连接是否正确,确保电源供电稳定。使用示波器检测I2C总线信号,确认通信是否正常。如有必要,更换显示屏或MCU。

优化建议

数据集成与分析

集成更多类型的传感器数据,使用数据分析技术进行家居环境状态的预测和优化。

建议:增加更多监测传感器,如空气质量传感器、噪声传感器等。使用云端平台进行数据分析和存储,提供更全面的家居环境监测和管理服务。

用户交互优化

改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。

建议:使用高分辨率彩色显示屏,提供更丰富的视觉体验。设计简洁易懂的用户界面,让用户更容易操作。提供图形化的数据展示,如实时家居环境参数图表、历史记录等。

智能化控制提升

增加智能决策支持系统,根据历史数据和实时数据自动调整家居管理策略,实现更高效的家居管理和控制。

建议:使用数据分析技术分析家居环境数据,提供个性化的家居管理建议。结合历史数据,预测可能的问题和需求,提前优化控制策略。

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中实现智能家居系统,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。通过合理的技术选择和系统设计,可以构建一个高效且功能强大的智能家居系统。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1932893.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

R语言优雅的把数据基线表(表一)导出到word

基线表(Baseline Table)是医学研究中常用的一种数据表格,用于在研究开始时呈现参与者的初始特征和状态。这些特征通常包括人口统计学数据、健康状况和疾病史、临床指标、实验室检测、生活方式、社会经济等。 本人在既往文章《scitb包1.6版本发…

Go语言中的并发

简单介绍go中的并发编程. 涉及内容主要为goroutine, goroutine间的通信(主要是channel), 并发控制(等待、退出). 想查看更多与Go相关的内容, 可以查看我的Go编程栏目 Goroutine 语法 在一个函数调用前加上go即可, go func(). 语法很简单, 可以说是并发写起来最简单的程序语言…

数据结构(Java):力扣 二叉树面试OJ题(二)【进阶】

目录 💎 1、题一:二叉树的层序遍历 🌟 1.1 思路1(递归求解) 🌟 1.1.1 思路1代码 🔆 1.2 思路2(队列求解) 🔆 1.2.1 思路2代码 💎 2、题二&…

2024.7.16日 最新版 docker cuda container tookit下载!

nvidia官方指导 https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html 其实就是这几个命令,但是有墙: curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/shar…

【JavaEE】-- 网络编程基础概念(详解)

🎇🎉🎉🎉点进来你就是我的人了 博主主页:🙈🙈🙈戳一戳,欢迎大佬指点! 人生格言: 当你的才华撑不起你的野心的时候,你就应该静下心来学习! 欢迎志同道合的朋友…

AV1技术学习: Compound Prediction

一、双向 Compound Prediction AV1支持两个参考帧的预测通过多种复合模式线性组合。复合预测公式为 其中,权重m(x, y) is scaled by 64 以进行整数计算,R1(x, y)和R2(x, y)表示两个参考块中位于(x, y)的像素。P(x, y)将按比例缩小 1/64 以形成最终的预测…

十五、【机器学习】【监督学习】- 神经网络回归

系列文章目录 第一章 【机器学习】初识机器学习 第二章 【机器学习】【监督学习】- 逻辑回归算法 (Logistic Regression) 第三章 【机器学习】【监督学习】- 支持向量机 (SVM) 第四章【机器学习】【监督学习】- K-近邻算法 (K-NN) 第五章【机器学习】【监督学习】- 决策树…

MyPostMan 迭代文档管理、自动化接口闭环测试工具(自动化测试篇)

MyPostMan 是一款类似 PostMan 的接口请求软件,按照 项目(微服务)、目录来管理我们的接口,基于迭代来管理我们的接口文档,文档可以导出和通过 url 实时分享,按照迭代编写自动化测试用例,在不同环…

定制QCustomPlot 带有ListView的QCustomPlot 全网唯一份

定制QCustomPlot 带有ListView的QCustomPlot 文章目录 定制QCustomPlot 带有ListView的QCustomPlot摘要需求描述实现关键字: Qt、 QCustomPlot、 魔改、 定制、 控件 摘要 先上效果,是你想要的,再看下面的分解,顺便点赞搜藏一下;不是直接右上角。 QCustomPlot是一款…

Spring中IoC容器和Bean

目录 IoC(Inversion of Control)控制反转思想 Spring技术对IoC思想的实现 DI(Dependency Injection)依赖注入 目标 最终效果 IoC入门案例 传统方法,不使用IoC思想调用dao层 使用IoC思想调用dao层 第一步:导入Spring坐标 第二步:创建…

stm32:CAN通讯

目录 介绍 协议层 CAN的 帧/报文 种类 数据帧 远程帧(遥控帧) 错误帧 过载帧 帧间隔 总线仲裁 stm32的CAN外设 工作模式 测试模式 功能框图 时序 标准时序 例子 环回静默模式测试 寄存器代码 HAL版本 介绍 一种功能丰富的车用总线标…

【ffmpeg命令入门】重新编码媒体流、设置码率、设置帧速率

文章目录 前言ffmpeg的描述重新编码媒体流重新编码媒体流的命令ffmpeg支持的媒体流 设置视频码率视频码率是什么设置视频的码率 设置文件帧数率帧数率是什么ffmpeg设置帧数率 总结 前言 在数字媒体处理领域,ffmpeg是一款非常强大的工具,它可以用来进行媒…

自动化产线 搭配数据采集监控平台 创新与突破

自动化产线在现在的各行各业中应用广泛,已经是现在的生产趋势,不同的自动化生产设备充斥在各行各业中,自动化的设备会产生很多的数据,这些数据如何更科学化的管理,更优质的利用,就需要数据采集监控平台来完…

解决Ubuntu 20.04下外接显示屏无信号问题【多次尝试无坑完整版!!!】

解决Ubuntu 20.04下外接显示屏无信号问题【多次尝试无坑完整版!!!】 一、引言 作为一名开发者,我经常在Windows和Ubuntu之间切换,以满足不同的开发需求。最近,我在使用惠普暗影精灵9(搭载RTX 4…

HLS加密技术:保障流媒体内容安全的利器

随着网络视频内容的爆炸性增长,如何有效保护视频内容的版权和安全成为了一个亟待解决的问题。HLS(HTTP Live Streaming)加密技术作为一种先进的流媒体加密手段,凭借其高效性和安全性,在直播、点播等场景中得到了广泛应…

隐性行为克隆——机器人的复杂行为模仿学习的新表述

介绍 论文地址:https://arxiv.org/pdf/2109.00137.pdf 源码地址:https://github.com/opendilab/DI-engine.git 近年来,人们对机器人学习进行了大量研究,并取得了许多成果。其中,模仿学习法尤其受到关注。这是一种从人…

JavaEE初阶 - IO、存储、硬盘、文件系统相关常识 (二)

🎇🎉🎉🎉点进来你就是我的人了 博主主页:🙈🙈🙈戳一戳,欢迎大佬指点! 人生格言: 当你的才华撑不起你的野心的时候,你就应该静下心来学习! 欢迎志同道合的朋友…

appium2.0 执行脚本遇到的问题

遇到的问题: appium 上的日志信息: 配置信息 方法一 之前用1.0的时候 地址默认加的 /wd/hub 在appium2.0上, 服务器默认路径是 / 如果要用/wd/hub 需要通过启动服务时设置基本路径 appium --base-path/wd/hub 这样就能正常执行了 方法二…

HarmonyOS NEXT学习——@BuilderParam装饰器

初步理解,相当于VUE的插槽slot Builder function overBuilder() {}Component struct Child {label: string ChildBuilder customBuilder() {}Builder customChangeThisBuilder() {}BuilderParam customBuilderParam: () > void this.customBuilder; // 使用自定…

【TDA4板端部署】基于 Pytorch 训练并部署 ONNX 模型在 TDA4

1 将torch模型转onnx模型 Ti转换工具只支持以下格式: Caffe - 0.17 (caffe-jacinto in gitHub) Tensorflow - 1.12 ONNX - 1.3.0 (opset 9 and 11) TFLite - Tensorflow 2.0-Alpha 基于 Tensorflow、Pytorch、Caffe 等训练框架,训练模型:选择…