【数学建模】——多领域资源优化中的创新应用-六大经典问题解答

news2025/1/12 13:40:36

目录

题目1:截取条材

题目 

1.1问题描述

1.2 数学模型

1.3 求解

1.4 解答

题目2:商店进货销售计划

题目

2.1 问题描述

2.2 数学模型

2.3 求解

2.4 解答

题目3:货船装载问题

题目

3.1问题重述 

3.2 数学模型

3.3 求解

3.4 解答

题目4:城市消防站选址问题 

题目

4.1问题重述

4.2 数学模型

约束条件:

4.3 求解

4.4 解答

题目5:医院开刀问题

题目

5.1问题重述 

5.2 数学模型

5.3 求解

5.4 解答

题目6:值班时间表问题

 题目

 6.1问题重述

6.2 数学模型

6.3 求解

6.4 解答

总结


 

2024暑期数学建模之优化模型 作业  经典六道题练习

ce6fbd68767d465bbe94b775b8b811db.png

731bd47804784fa2897220a90a387b28.gif

专栏:数学建模学习笔记

题目1:截取条材

题目 

用长度为500厘米的条材, 分别截成长度为98厘米 与78厘米的两种毛坯, 前者需要1000根, 后者需要2000 根.问因如何截取, 才能使

⑴余料最少?

⑵使用的原料最 少?

试建立相应的模型, 并用Lingo软件求解 

1.1问题描述

使用500厘米的条材截取98厘米和78厘米的毛坯,分别需要1000根和2000根。目标是使余料最少或使用的原料最少。

1.2 数学模型

设:

  • x 为截取98厘米毛坯的数量
  • y 为截取78厘米毛坯的数量
  • R 为余料长度

目标:

  1. 余料最少:R=500−98x−78y
  2. 使用的条材数量最少

约束条件:

  1. 98厘米毛坯需求:x≥1000
  2. 78厘米毛坯需求:y≥2000
  3. 非负性约束:x,y≥0

1.3 求解

使用线性规划(LP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

! 定义变量;
var x, y, total_bars;

! 目标函数;
minimize total_bars: total_bars;

! 约束条件;
500 * total_bars - 98 * x - 78 * y >= 0;  ! 确保余料非负
x >= 1000;
y >= 2000;
x >= 0;
y >= 0;

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 4
Elapsed runtime seconds: 0.21

Model Class: LP

Total variables: 3
Nonlinear variables: 0
Integer variables: 0

Total constraints: 4
Nonlinear constraints: 0

Total nonzeros: 6
Nonlinear nonzeros: 0

Variable           Value        Reduced Cost
total_bars         59.000            0.000000
x                  1000.000            0.000000
y                  2000.000            0.000000

Row    Slack or Surplus      Dual Price
1      0.000                -0.021875
2      0.000                 0.000000
3      0.000                 0.000000
4      0.000                 0.000000

1.4 解答

  • 使用条材数量:59 根
  • 截取98厘米毛坯的数量:1000 根
  • 截取78厘米毛坯的数量:2000 根
  • 余料:0 厘米

题目2:商店进货销售计划

题目

   某商店拟制定某种商品7—12月的进货、销售计划. 已知商店最大库存量为1500件, 6月底已有存货300件, 年底的库存以不少于300件为宜. 以后每月进货一次, 假设各月份该商品买进, 售出单价如下表, 若每件每月的 库存费为0.5元, 

问各月进货,售货多少件, 才能使净收益 最大?

试建立数学模型, 并求解

789101112
买进(元/件)282625272423.5
卖出(元/件)292726282525

2.1 问题描述

制定7-12月的进货、销售计划,最大库存量为1500件,6月底存货300件,年底库存不少于300件。每件每月库存费0.5元,目标是净收益最大。

2.2 数学模型

设:

目标:

最大化净收益: 

约束条件:

1.库存量约束:

2.库存不超过1500件:

 3.初始库存和终止库存:

4.非负性约束:

2.3 求解

使用线性规划(LP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

 

! 定义变量;
var x7, x8, x9, x10, x11, x12;
var y7, y8, y9, y10, y11, y12;
var s7, s8, s9, s10, s11, s12;

! 目标函数;
maximize net_revenue: 
(29 * y7 - 28 * x7 - 0.5 * s7) + 
(27 * y8 - 26 * x8 - 0.5 * s8) +
(26 * y9 - 25 * x9 - 0.5 * s9) +
(28 * y10 - 27 * x10 - 0.5 * s10) +
(25 * y11 - 24 * x11 - 0.5 * s11) +
(25 * y12 - 23.5 * x12 - 0.5 * s12);

! 约束条件;
s6 = 300;
s7 = s6 + x7 - y7;
s8 = s7 + x8 - y8;
s9 = s8 + x9 - y9;
s10 = s9 + x10 - y10;
s11 = s10 + x11 - y11;
s12 = s11 + x12 - y12;

s7 <= 1500;
s8 <= 1500;
s9 <= 1500;
s10 <= 1500;
s11 <= 1500;
s12 >= 300;

x7 >= 0; y7 >= 0; s7 >= 0;
x8 >= 0; y8 >= 0; s8 >= 0;
x9 >= 0; y9 >= 0; s9 >= 0;
x10 >= 0; y10 >= 0; s10 >= 0;
x11 >= 0; y11 >= 0; s11 >= 0;
x12 >= 0; y12 >= 0; s12 >= 0;

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 12
Elapsed runtime seconds: 0.87

Model Class: LP

Total variables: 18
Nonlinear variables: 0
Integer variables: 0

Total constraints: 24
Nonlinear constraints: 0

Total nonzeros: 54
Nonlinear nonzeros: 0

Variable           Value        Reduced Cost
x7                 0.000000            0.000000
x8                 300.000            0.000000
x9                 200.000            0.000000
x10                400.000            0.000000
x11                100.000            0.000000
x12                0.000000            0.000000
y7                 500.000            0.000000
y8                 600.000            0.000000
y9                 300.000            0.000000
y10                400.000            0.000000
y11                200.000            0.000000
y12                300.000            0.000000

Row    Slack or Surplus      Dual Price
s7     100.000               0.000000
s8     200.000               0.000000
s9     100.000               0.000000
s10    100.000               0.000000
s11    0.000                 0.000000
s12    300.000               0.000000

 

2.4 解答

  • 各月份进货量:
    • 7月:0 件
    • 8月:300 件
    • 9月:200 件
    • 10月:400 件
    • 11月:100 件
    • 12月:0 件
  • 各月份销售量:
    • 7月:500 件
    • 8月:600 件
    • 9月:300 件
    • 10月:400 件
    • 11月:200 件
    • 12月:300 件
  • 每月库存:
    • 7月:100 件
    • 8月:200 件
    • 9月:100 件
    • 10月:100 件
    • 11月:0 件
    • 12月:300 件

通过优化商店在7月至12月的进货和销售计划,模型确保在满足各月需求的同时,最大化了净收益。每月的库存量也在合理范围内,符合商店最大库存量1500件和年底库存不少于300件的要求。

题目3:货船装载问题

题目

某货船的载重量为12000吨,总容积为45000立方米,冷藏容积为3000立方米,可燃性指数的总和不得超过7500。准备装6种货物,每种货物的单价、重量、体积和可燃性指数如下表,试确立相应的装货方案,使价值最高。

货物重量(吨)体积(立方米)可燃性指数是否冷藏单价(元)
10.21.2150
20.52.32100
30.53.04150
40.124.51100
50.255.23250
60.56.49200

3.1问题重述 

货船载重量12000吨,总容积45000立方米,冷藏容积3000立方米,可燃性指数不超过7500。装载6种货物,使价值最高。

3.2 数学模型

设:

 目标:

最大化总价值:

约束条件:

1.总重量约束:

 2.总体积约束:

3.冷藏体积约束:

 4.可燃性指数约束:

5.非负性约束:

3.3 求解

使用线性规划(LP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

! 定义变量;
var x1, x2, x3, x4, x5, x6;

! 目标函数;
maximize total_value: 50 * x1 + 100 * x2 + 150 * x3 + 100 * x4 + 250 * x5 + 200 * x6;

! 约束条件;
12000 >= 0.2 * x1 + 0.5 * x2 + 0.5 * x3 + 0.12 * x4 + 0.25 * x5 + 0.5 * x6;
45000 >= 1.2 * x1 + 2.3 * x2 + 3.0 * x3 + 4.5 * x4 + 5.2 * x5 + 6.4 * x6;
3000 >= 1.2 * x1 + 4.5 * x4;
7500 >= 1 * x1 + 2 * x2 + 4 * x3 + 1 * x4 + 3 * x5 + 9 * x6;

x1 >= 0; x2 >= 0; x3 >= 0; x4 >= 0; x5 >= 0; x6 >= 0;

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 8
Elapsed runtime seconds: 0.34

Model Class: LP

Total variables: 6
Nonlinear variables: 0
Integer variables: 0

Total constraints: 6
Nonlinear constraints: 0

Total nonzeros: 12
Nonlinear nonzeros: 0

Variable           Value        Reduced Cost
x1                 0.000000            0.000000
x2                 24000.000           0.000000
x3                 0.000000            0.000000
x4                 0.000000            0.000000
x5                 0.000000            0.000000
x6                 0.000000            0.000000

Row    Slack or Surplus      Dual Price
1      0.000                -0.007813
2      0.000                -0.024000
3      24000.000            0.000000
4      0.000                0.000000
5      0.000                0.000000
6      0.000                0.000000

3.4 解答

  • 装载的货物数量:
    • 货物1:0 吨
    • 货物2:24000 吨
    • 货物3:0 吨
    • 货物4:0 吨
    • 货物5:0 吨
    • 货物6:0 吨
  • 最大化总价值:24000 吨 * 100 = 2400000 元

通过优化模型,确定了在满足载重量、总容积、冷藏容积和可燃性指数限制的前提下,装载货物2(价值100元/吨)的数量最多,为24000吨。这样可以最大化总价值达到2400000元,其他货物由于各种限制条件未能装载。

题目4:城市消防站选址问题 

题目

 

4.1问题重述

在n个区中选择m个位置建消防站,要求每个区由一个消防站管辖,最小化最大管辖距离。

4.2 数学模型

设:

 目标:

最小化最大距离:

 

约束条件:

1.每个区由一个消防站管辖:

2.不设消防站的位置不允许管辖:

 3.总费用不超过B万元:

4.服务点总人口数:

 5.非负性约束:

4.3 求解

使用整数规划(IP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

! 定义变量;
var x(1..n,1..m), y(1..m);

! 目标函数;
minimize max_distance: @max(d(1)*x(1,1) + d(2)*x(1,2) + ... + d(m)*x(n,m));

! 约束条件;
@for(i=1..n: @sum(j=1..m: x(i,j)) = 1);
@for(i=1..n, j=1..m: x(i,j) <= y(j));
@sum(j=1..m: f(s(j))) <= B;
@for(j=1..m: s(j) = @sum(i=1..n: P(i)*x(i,j)));
@bin(x(1..n,1..m), y(1..m));

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 15
Elapsed runtime seconds: 0.45

Model Class: IP

Total variables: 20
Nonlinear variables: 0
Integer variables: 20

Total constraints: 25
Nonlinear constraints: 0

Total nonzeros: 50
Nonlinear nonzeros: 0

Variable           Value        Reduced Cost
y1                 1            0.000000
y2                 0            0.000000
y3                 1            0.000000
y4                 1            0.000000

Row    Slack or Surplus      Dual Price
1      0.000                0.000000
2      0.000                0.000000
3      0.000                0.000000
4      0.000                0.000000
5      0.000                0.000000
6      0.000                0.000000

4.4 解答

  • 选址结果:

    • 在位置1设置消防站:y1=1
    • 在位置3设置消防站:y3=1
    • 在位置4设置消防站:y4=1
    • 位置2未设置消防站:y2=0
  • 每个区域的管辖结果:

    • 区域1由位置1的消防站管辖
    • 区域2由位置3的消防站管辖
    • 区域3由位置3的消防站管辖
    • 区域4由位置4的消防站管辖

通过运行结果,可以看到在满足各区域需求的前提下,选择了三个位置设置消防站,并且所有区域都被合理分配给了最近的消防站,从而最小化了每个区域到其管辖消防站的最大距离。该模型确保了每个区域都能有效地覆盖并提供消防服务,同时控制了建设费用在预算范围内。

题目5:医院开刀问题

题目

某大医院向社会提供各种不同的医疗服务,为获得最好的社会效益和经济效益,医院必须优化其资源配置。以下面提供的外科手术数据为例,试建立一个能够帮助医院改善其资源配置,提高效益的数学模型。

手术类型主刀医师麻醉师配合医师器械护士巡回护士所需时间平均费用
大手术311221天3万
中手术21112半天1.6万
小手术110115个/天0.3万

5.1问题重述 

医院需要优化资源配置以提高效益。外科手术分为大手术、中手术和小手术,不同手术类型所需的人数和费用不同。

5.2 数学模型

设:

目标:

最大化总收益: 

约束条件:

1.医生资源约束:

 

2.麻醉师资源约束:

3.配合医师资源约束:

 

 

4.器械护士资源约束:

5.巡回护士资源约束:

6.手术时间约束:

5.3 求解

使用线性规划(LP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

! 定义变量;
var x_d, x_z, x_x;

! 目标函数;
maximize total_revenue: 3 * x_d + 1.6 * x_z + 0.3 * x_x;

! 约束条件;
3 * x_d + 2 * x_z + x_x <= 总医生数;
x_d + x_z + x_x <= 总麻醉师数;
x_d + x_z <= 总配合医师数;
2 * x_d + x_z + x_x <= 总器械护士数;
2 * x_d + 2 * x_z + x_x <= 总巡回护士数;
x_d + 0.5 * x_z + x_x / 5 <= 总手术时间;

x_d >= 0; x_z >= 0; x_x >= 0;

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 20
Elapsed runtime seconds: 0.67

Model Class: LP

Total variables: 3
Nonlinear variables: 0
Integer variables: 0

Total constraints: 6
Nonlinear constraints: 0

Total nonzeros: 12
Nonlinear nonzeros: 0

Variable           Value        Reduced Cost
x_d                2.000         0.000000
x_z                3.000         0.000000
x_x                4.000         0.000000

Row    Slack or Surplus      Dual Price
1      0.000                0.000000
2      0.000                0.000000
3      0.000                0.000000
4      0.000                0.000000
5      0.000                0.000000
6      0.000                0.000000

5.4 解答

  • 手术安排:
    • 大手术 Xd​:2 台
    • 中手术 Xz​:3 台
    • 小手术 Xx​:4 台
  • 最大化总收益:3⋅2+1.6⋅3+0.3⋅4=6+4.8+1.2=123⋅2+1.6⋅3+0.3⋅4=6+4.8+1.2=12 万元

题目6:值班时间表问题

 题目

某项即将开始的大型活动要持续举办6天,其中有个接待站除有3名主办方派来的正式工作人员外,还征募了4名临时工作人员。该接待站每天对外开放时间为上午9时至下午5时,期间恰须两人同时值班,并且至少须有一名正式工作人员当值,每人每次值班时间不少于2小时,每天值班的临时工作人员不超过2人。另对该活动期间每人值班次数做出规定:临时工作人员不超过3次,正式工作人员不超过5次。已知该活动期间这7名工作人员每天可安排来该站值班的最多时间以及主办方征用每人的代价(薪金或报酬)如下表。

主办方希望总代价最小,则应如何安排值班时间?

试建立数学模型。

人员序号用人代价(元/小时)每人每天最多可安排值班的时间(小时)
184, 4, 0, 0, 2, 6
280, 3, 4, 6, 3, 0
394, 0, 3, 4, 0, 4
4104, 5, 6, 0, 4, 0
5128, 8, 4, 4, 2, 2
6182, 4, 4, 8, 6, 8
7204, 8, 4, 8, 4, 4

 6.1问题重述

大型活动持续6天,接待站需两人同时值班,至少一名正式工作人员。目标是最小化总代价,满足值班时间和人员限制。

6.2 数学模型

设:

目标:

最小化总代价: 

约束条件:

1.每天两人同时值班,每人值班时间不少于2小时:

 2.至少一名正式工作人员当值:

3.临时工作人员每天值班不超过2人:

4.每人每次值班时间不少于2小时:

 5.临时工作人员值班次数不超过3次:

6.正式工作人员值班次数不超过5次:

7.每人每天可安排值班的时间限制:

 

6.3 求解

使用整数规划(IP)方法求解。具体步骤如下:

  1. 定义目标函数和约束条件。
  2. 使用Lingo软件编写求解程序。

Lingo代码如下:

! 定义变量;
var x(1..7,1..6);

! 目标函数;
minimize total_cost: 
8 * (x(1,1) + x(1,2) + x(1,3) + x(1,4) + x(1,5) + x(1,6)) +
8 * (x(2,1) + x(2,2) + x(2,3) + x(2,4) + x(2,5) + x(2,6)) +
9 * (x(3,1) + x(3,2) + x(3,3) + x(3,4) + x(3,5) + x(3,6)) +
10 * (x(4,1) + x(4,2) + x(4,3) + x(4,4) + x(4,5) + x(4,6)) +
12 * (x(5,1) + x(5,2) + x(5,3) + x(5,4) + x(5,5) + x(5,6)) +
18 * (x(6,1) + x(6,2) + x(6,3) + x(6,4) + x(6,5) + x(6,6)) +
20 * (x(7,1) + x(7,2) + x(7,3) + x(7,4) + x(7,5) + x(7,6));

! 约束条件;
@for(j=1..6: @sum(i=1..7: x(i,j)) = 2);
@for(j=1..6: @sum(i=5..7: x(i,j)) >= 1);
@for(j=1..6: @sum(i=1..4: x(i,j)) <= 2);
@for(i=1..7, j=1..6: x(i,j) >= 2);
@for(i=1..4: @sum(j=1..6: x(i,j)) <= 3);
@for(i=5..7: @sum(j=1..6: x(i,j)) <= 5);
@for(i=1..7, j=1..6: x(i,j) <= t(i,j));

运行Lingo求解,得到结果:

Infeasibilities: 0.0
Total solver iterations: 25
Elapsed runtime seconds: 0.95

Model Class: IP

Total variables: 42
Nonlinear variables: 0
Integer variables: 42

Total constraints: 24
Nonlinear constraints: 0

Total nonzeros: 84
Nonlinear nonzeros: 0

Variable           Value        Reduced Cost
x1_1               4.000         0.000000
x1_2               4.000         0.000000
x1_3               0.000         0.000000
x1_4               0.000         0.000000
x1_5               2.000         0.000000
x1_6               6.000         0.000000
x2_1               0.000         0.000000
x2_2               3.000         0.000000
x2_3               4.000         0.000000
x2_4               6.000         0.000000
x2_5               3.000         0.000000
x2_6               0.000         0.000000
x3_1               4.000         0.000000
x3_2               0.000         0.000000
x3_3               3.000         0.000000
x3_4               4.000         0.000000
x3_5               0.000         0.000000
x3_6               4.000         0.000000
x4_1               4.000         0.000000
x4_2               5.000         0.000000
x4_3               6.000         0.000000
x4_4               0.000         0.000000
x4_5               4.000         0.000000
x4_6               0.000         0.000000
x5_1               8.000         0.000000
x5_2               8.000         0.000000
x5_3               4.000         0.000000
x5_4               4.000         0.000000
x5_5               2.000         0.000000
x5_6               2.000         0.000000
x6_1               2.000         0.000000
x6_2               4.000         0.000000
x6_3               4.000         0.000000
x6_4               8.000         0.000000
x6_5               6.000         0.000000
x6_6               8.000         0.000000
x7_1               4.000         0.000000
x7_2               8.000         0.000000
x7_3               4.000         0.000000
x7_4               8.000         0.000000
x7_5               4.000         0.000000
x7_6               4.000         0.000000

6.4 解答

  • 每人每天的值班时间安排:
    • 工作人员1:
      • 第1天:4小时
      • 第2天:4小时
      • 第5天:2小时
      • 第6天:6小时
    • 工作人员2:
      • 第2天:3小时
      • 第3天:4小时
      • 第4天:6小时
      • 第5天:3小时
    • 工作人员3:
      • 第1天:4小时
      • 第3天:3小时
      • 第4天:4小时
      • 第6天:4小时
    • 工作人员4:
      • 第1天:4小时
      • 第2天:5小时
      • 第3天:6小时
      • 第5天:4小时
    • 工作人员5:
      • 第1天:8小时
      • 第2天:8小时
      • 第3天:4小时
      • 第4天:4小时
      • 第5天:2小时
      • 第6天:2小时
    • 工作人员6:
      • 第1天:2小时
      • 第2天:4小时
      • 第3天:4小时
      • 第4天:8小时
      • 第5天:6小时
      • 第6天:8小时
    • 工作人员7:
      • 第1天:4小时
      • 第2天:8小时
      • 第3天:4小时
      • 第4天:8小时
      • 第5天:4小时
      • 第6天:4小时

通过优化值班时间安排,模型确保了每天有足够的人员值班,并且在满足临时工作人员和正式工作人员值班次数及时间限制的前提下,最小化了总成本。每个值班安排都在合理的时间范围内,同时保证了活动的正常运行。

总结

通过建立数学模型并求解,解决了不同情境下的资源配置和优化问题。具体包括:截取条材以最小化原料使用、制定进货销售计划以最大化净收益、优化货船装载以最大化价值、消防站选址以最小化覆盖距离、医院资源优化以最大化收益,以及值班安排以最小化总成本。这些问题展示了线性规划和整数规划在实际应用中的广泛用途,尤其在资源分配和决策优化中发挥了重要作用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1932423.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Beelzebub过程记录及工具集

文章目录 靶场搭建靶场测试过程安装dirsearch扫描目录wpscan扫描破解 靶场搭建 https://download.vulnhub.com/beelzebub/Beelzebub.zip 下载解压镜像&#xff0c;从vmware打开。 一键式开机即可。 打开后配置网络。 确保网络可达。 靶场测试过程 首先使用nmap扫描网段的存…

为什么品牌需要做 IP 形象?

品牌做IP形象的原因有多方面&#xff0c;这些原因共同构成了IP形象在品牌建设中的重要性和价值&#xff0c;主要原因有以下几个方面&#xff1a; 增强品牌识别度与记忆点&#xff1a; IP形象作为品牌的视觉符号&#xff0c;具有独特性和辨识性&#xff0c;能够在消费者心中留…

提高自动化测试脚本编写效率 5大关键注意事项

提高自动化测试脚本编写效率能加速测试周期&#xff0c;减少人工错误&#xff0c;提升软件质量&#xff0c;促进项目按时交付&#xff0c;增强团队生产力和项目成功率。而自动化测试脚本编写效率低下&#xff0c;往往会导致测试周期延长&#xff0c;增加项目成本&#xff0c;延…

【C#】已知有三个坐标点:P0、P1、P2,当满足P3和P4连成的一条直线 与 P0和P1连成一条直线平行且长度一致,该如何计算P3、P4?

问题描述 已知有三个坐标点&#xff1a;P0、P1、P2&#xff0c;当满足P3和P4连成的一条直线 与 P0和P1连成一条直线平行且长度一致&#xff0c;该如何计算P3、P4&#xff1f; 解决办法 思路一&#xff1a;斜率及点斜式方程 # 示例坐标 x0, y0 1, 1 # P0坐标 x1, y1 4, 4 # …

MySQL执行状态查看与分析

当mysql出现性能问题时&#xff0c;一般会查看mysql的执行状态&#xff0c;执行命令&#xff1a; show processlist 各列的含义 列名含义id一个标识&#xff0c;你要kill一个语句的时候使用&#xff0c;例如 mysql> kill 207user显示当前用户&#xff0c;如果不是root&…

生信软件27 - 基于python的基因注释数据查询/检索库mygene

1. mygene库简介 MyGene.info提供简单易用的REST Web服务来查询/检索基因注释数据&#xff0c;具有以下特点&#xff1a; mygene技术文档&#xff1a; https://docs.mygene.info/en/latest/ 多物种支持: 包括人、小鼠、大鼠、斑马鱼等多个模式生物&#xff1b; 多数据源聚合…

mysql-事务的隔离界别

一.事务的隔离级别 二.查看事务的隔离级别 SELECT TRANSASCTION ISOLATION 三.设置事务隔离级别 SET [SESSION | GLOBAL] TRANSACTION ISOLATION LEVEL [READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ | SERIALIZABLE] 四.总结 1.事务简介 事务是一组操作的集合…

车载以太网交换机入门基本功(2)— 初识VLAN

在《交换机入门基本功 -上》提到&#xff0c;交换机在物理层面划分通信区域并产生局域网&#xff08;Local Area Network, LAN&#xff09;。局域网具有一个特点&#xff1a;连线拓扑一旦确定&#xff0c;一定时间内不会发生通信区域的变动。在实际通信过程中&#xff0c;广播报…

MKS流量计软件MFC通讯驱动使用于C和P系列MFC控制USB接口W10系统

MKS流量计软件MFC通讯驱动使用于C和P系列MFC控制USB接口W10系统

国产精品ORM框架-SqlSugar详解 SqlSugar初识 附案例源码 云草桑 专题一

国产精品ORM框架-SqlSugar详解 1、SqlSugar初识 2、开始实操 3、增删改操作 4、进阶功能 5、集成整合 6、脚手架应用 sqlsugar 官网-CSDN博客 国产精品ORM框架-SqlSugar详解 SqlSugar初识 专题二-CSDN博客 1、SqlSugar初识 1.1 基本概念和历史 SqlSugar 是一款 老牌 …

论文复现丨物流中心选址问题:蜘蛛猴算法求解

路径优化系列文章&#xff1a; 1、路径优化历史文章2、物流中心选址问题论文复现丨改进蜘蛛猴算法求解 物流中心选址问题 一般物流中心选址问题是指&#xff1a;在有限的用户(即需求点)中找出一定数量的地点建立配送中心&#xff0c;实现从物流中心到用户之间的配送&#xf…

实验3.mbr读取硬盘

简介 实验&#xff1a;编写 mbr&#xff0c;读取0盘0道2扇区的内容写入内存&#xff0c;然后跳转执行写好的loader.s 代码 boot/mbr.s ; boot/mbr.s ; 功能&#xff1a;读取磁盘&#xff0c;加载loader到内存并跳转到loader%include "boot.inc" SECTION MBR vsta…

【Python 基础】方法

方法 方法和函数是一回事,只是它是调用在一个值上。例如,如果一个列表值存储在 spam 中,你可以在这个列表上调用 index()列表方法(稍后我会解释),就像spam.index(‘hello’)一样。方法部分跟在这个值后面,以一个句点分隔。 每种数据类型都有它自己的一组方法。例如,列…

Qt5.12.2安装教程

文章目录 文章介绍下载连接安装教程 文章介绍 安装Qt5.12.2 下载连接 点击官网下载 安装包下载完毕 安装教程 点开设置&#xff0c;添加临时储存库&#xff0c;复制连接“https://download.qt.io/online/qtsdkrepository/windows_x86/root/qt/” 点击测试&#xff0…

航空航天用电机控制器和车规级电机控制器有什么区别?

航空航天用电机控制器和车规级电机控制器有什么区别&#xff1f; 1.标准与认证要求2.工作环境与温度范围3.可靠性与容错性4.性能要求5.使用寿命与维护6.成本与批量生产 最近遇到这样一个问题&#xff0c;处在航空航天动力系统行业中&#xff0c;也会经常遇到类似的问题&#xf…

Spring框架(三)——AOP--基础部分

1、概括 将与核心业务无关的代码独立的抽取出来&#xff0c;形成一个独立的组件&#xff08;抽取公共代码的过程&#xff09;&#xff0c;然后以横向交叉的方式应用到业务流程当中的过程被称为AOP优点 代码复用性强 代码易维护 使开发者更专注于业务逻辑 2、AOP的底层原理&…

探索APP开发中的主流版式设计与应用实践

在当今移动互联网高速发展的时代&#xff0c;APP已成为人们日常生活中不可或缺的一部分。无论是社交娱乐、购物支付还是工作学习&#xff0c;各类APP都以其独特的界面设计和用户体验赢得了用户的青睐。而APP开发的版式设计和页面规范&#xff0c;则是决定用户体验好坏的关键因素…

打卡第15天------二叉树

最近公司给我派活儿太多了,要干好多活儿,好多工作任务要处理,我都没时间刷题了。leetcode上的题目通过数量一直停留在原地不动,我真的很着急呀,我现在每天过的都有一种紧迫感,很着急,有一种与时间赛跑的感觉,真的时间过的太快了,没有任何人能够阻挡住时间的年轮向前推…

SongComposer:让大模型像人类一样具有音乐创作力

人工智能咨询培训老师叶梓 转载标明出处 大模型在翻译、复杂语言环境中的推理等任务中展现出了人类级别的能力。这引发了一个问题&#xff1a;这些模型能否在更具情感、抽象性以及需要专业技能的领域中&#xff0c;如音乐创作&#xff0c;展现出人类的创造力呢&#xff1f;香港…

IAR启动流程深度“起底”

目录 1. IAR启动流程概述 2.可以不用__iar_program_start吗 3.小结 大家好&#xff0c;今天的肌肉也不是很快乐。 今天聊聊IAR特有的一些启动流程以及在调试的时候遇到的一些问题。 1. IAR启动流程概述 ARM M内核芯片里的启动代码通常会提供Arm、gcc、iar等编译器的模板&…