使用windows批量解压和布局ImageNet ISLVRC2012数据集

news2024/11/15 21:24:44

使用的系统是windows,找到的解压命令很多都linux系统中的,为了能在windows系统下使用,因此下载Git这个软件,在其中的Git Bash中使用以下命令,因为Git Bash集成了很多linux的命令,方便我们的使用。

ImageNet 中目前共有 14,197,122 幅图像,总共分为 21,841 个类别(synsets),通常我们所说的 ImageNet 数据集其实是指 ISLVRC2012 比赛用的子数据集,其中 train 有 1,281,167 张照片和标签,共 1000 类,大概每类 1300 张图片,val 有 50,000 副图像,每类 50 个数据,test 有 100,000 副图片,每类 100 个数据。

比赛分为三个场景:图像分类(CLS)、目标定位(LOC)和目标检测(DET)。CLS:2010-2014 比赛中独立任务,2015 年与 LOC 合并,使用 top5。LOC:从 2011 年开始,2015 年与 CLS 合并为 CLS-LOC,单目标定位任务的数据与 CLS 任务包含相同的照片,照片数据手动标注图像是否存在 1000 个物体类别之一的实例,每张图片包含一个 gt 标签,该类别的每个实例都标注了边界框 bounding box,比赛中 IoU>0.5。

1.数据集下载:(一个大佬的链接)

  • 训练集:ILSVRC2012_img_train.tar.gz,提取码:yoos;
  • 验证集:ILSVRC2012_img_val.tar.gz,提取码:yl8m;
  • 测试集:ILSVRC2012_img_test.tar.gz,提取码:jumt;
  • 任务 1&2 的 devkit:ILSVRC2012_devkit_t12.tar,提取码:dw6i;

2. 数据解压

我们会得到训练集与验证集的两个压缩包,分别是 ILSVRC2012_img_train.tar 和 ILSVRC2012_img_val.tar

数据集布局要求是:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class2/
      img4.jpeg

首先创建两个用于放训练集和测试集的文件夹,然后解压:

(1)解压训练集

右键对训练集选择Git Bash Here

三行命令逐行输入进Git Bash Here窗口中:

mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done
cd ..

结果如下:

(2)解压测试集
wget https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

mkdir val && tar -xvf ILSVRC2012_img_val.tar -C val && mv valprep.sh val && cd val && bash valprep.sh

下载的valprep.sh文件在外网(valprep.sh文件中保存的就是图片按类生成文件夹的布局),或者可以直接迅雷链接,将下载后的文件放入和验证集压缩包同一文件夹下,这样直接在Git Bash Here窗口使用第二个命令就可以完成解压。(也是一个大佬的链接)

链接:https://pan.xunlei.com/s/VMkus56ePQ4LMJUIXheBkhXSA1 提取码:k9ej
或者利用python解压测试集:

【点击下载验证集标签】
对于训练集,不同类别的数据躺在不同的文件夹里,用起来很方便(同一文件夹的视为一类)。但是验证集没有对应的标签,需要额外处理。

验证集的标签在 Development kit (文件名为 ILSVRC2012_devkit_t12.tar.gz)中的ILSVRC2012_devkit_t12\data\ILSVRC2012_validation_ground_truth.txt 中:

在映射关系储存在和txt文件同目录下的 meta.mat 文件中。我们希望验证集的文件结构长得和训练集一样,即 :

/val
/n01440764
images
/n01443537
images

解压完压缩包后:新建python文件:

from scipy import io
import os
import shutil
 
def move_valimg(val_dir='./val', devkit_dir='./ILSVRC2012_devkit_t12'):
    """
    move valimg to correspongding folders.
    val_id(start from 1) -> ILSVRC_ID(start from 1) -> WIND
    organize like:
    /val
       /n01440764
           images
       /n01443537
           images
        .....
    """
    # load synset, val ground truth and val images list
    synset = io.loadmat(os.path.join(devkit_dir, 'data', 'meta.mat'))
    
    ground_truth = open(os.path.join(devkit_dir, 'data', 'ILSVRC2012_validation_ground_truth.txt'))
    lines = ground_truth.readlines()
    labels = [int(line[:-1]) for line in lines]
    
    root, _, filenames = next(os.walk(val_dir))
    for filename in filenames:
        # val image name -> ILSVRC ID -> WIND
        val_id = int(filename.split('.')[0].split('_')[-1])
        ILSVRC_ID = labels[val_id-1]
        WIND = synset['synsets'][ILSVRC_ID-1][0][1][0]
        print("val_id:%d, ILSVRC_ID:%d, WIND:%s" % (val_id, ILSVRC_ID, WIND))
 
        # move val images
        output_dir = os.path.join(root, WIND)
        if os.path.isdir(output_dir):
            pass
        else:
            os.mkdir(output_dir)
        shutil.move(os.path.join(root, filename), os.path.join(output_dir, filename))
 
if __name__ == '__main__':
    move_valimg()

3. 预处理Crop & Resize

数据集在扔给网络模型做训练前还需要统一尺寸处理,一方面是 CNN 需要统一尺寸的输入,另一方面是可以有数据增强的效果。一般来说有 crop 和 resize 两个过程。

其中 crop 的方法有 single crop 和 multiple crops 两种:

  • single crop:先将图像 resize 到某个尺度,例如:256 x N(短边为256),然后 centercrop 成 224x224 作为模型的输入;
  • multiple crops 的具体形式有多种,可自行指定,比如:1)10 crops:取(左上,左下,右上,右下,正中)以及它们的水平翻转,这 10 个 crops 作为 CNN 输入,最终取平均预测结果;2)144 crops:首先将图像 resize 到 4 个尺度:256xN,320xN,384xN,480xN,然后每个尺度上去取“最左”,“正中”,“最右”这 3 个位置的正方形区域,对每个正方形区域,取上述的 10 个 224x224 的 crops,则得到 4x3x10=120 个 crops,再对上述正方形区域直接 resize 到 224x224,以及做水平翻转,则又得到 4x3x2=24 个 crops,总共加起来就是 144 个 crops,输入到网络最后取平均预测结果

4.  用Pytorch加载

使用 torchvision.datasets.ImageFolder() 就可以直接加载处理好的数据集啦!

  • 
    def load_ImageNet(ImageNet_PATH, batch_size=64, workers=3, pin_memory=True): 
        
        traindir = os.path.join(ImageNet_PATH, 'ILSVRC2012_img_train')
        valdir   = os.path.join(ImageNet_PATH, 'ILSVRC2012_img_val')
        print('traindir = ',traindir)
        print('valdir = ',valdir)
        
        normalizer = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                         std=[0.229, 0.224, 0.225])
    
        train_dataset = datasets.ImageFolder(
            traindir,
            transforms.Compose([
                transforms.RandomResizedCrop(224),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                normalizer
            ])
        )
    
        val_dataset = datasets.ImageFolder(
            valdir,
            transforms.Compose([
                transforms.Resize(256),
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalizer
            ])
        )
        print('train_dataset = ',len(train_dataset))
        print('val_dataset   = ',len(val_dataset))
        
        train_loader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=batch_size,
            shuffle=True,
            num_workers=workers,
            pin_memory=pin_memory,
            sampler=None
        )
        val_loader = torch.utils.data.DataLoader(
            val_dataset,
            batch_size=batch_size,
            shuffle=False,
            num_workers=workers,
            pin_memory=pin_memory
        )
        return train_loader, val_loader, train_dataset, val_dataset
    
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1932078.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【博士每天一篇文献-算法】 PNN网络启发的神经网络结构搜索算法Progressive neural architecture search

阅读时间:2023-12-23 1 介绍 年份:2018 :Chenxi Liu,Google DeepMind研究科学家;Barret Zoph,OpenAI;Maxim Neumann,Goolge 会议:B区会议, Proceedings of the European conference on computer vision (ECCV). 引用…

【Android14 ShellTransitions】(七)Transition就绪

Transition.onTransactionReady的内容比较长,我们挑重点的部分逐段分析(跳过的地方并非不重要,而是我柿子挑软的捏)。 1 窗口绘制状态的流转以及显示SurfaceControl 注意我们这里的SurfaceControl特指的是WindowSurfaceControll…

Excel办公技巧:制作二级联动下拉菜单

分享制作二级联动下拉菜单的方法,即使数据有增删,菜单也能自动更新! 可以通过先定义名称,再结合数据验证,来做二级联动下拉菜单。 1. 准备数据 首先,我们需要准备好要进行二级联动下拉菜单的数据&#xff…

K8S 上部署 Emqx

文章目录 安装方式一:快速部署安装方式二:定制化部署1. 使用 Pod 直接部署 EMQX Broker2. 使用 Deoloyment 部署 Pod3. 使用 Services 公开 EMQX Broker Pod 服务4. 通过 kubernetes 自动集群 EMQX MQTT 服务器5. 修改 EMQX Broker 的配置6. 赋予 Pod 访…

共享自助台球厅系统,扫码开台,物联网开灯,智能计费

共享自助台球厅系统,扫码开台,物联网开灯,智能计费 含小程序,商家手机端和pc管理端 后端php 前端uniapp 纯开源 可定制 持续更新

常用的点云预处理算法

点云预处理是处理点云数据时的重要部分,其目的是提高点云数据的质量和处理效率。通过去除离群点、减少点云密度和增强特征,可以消除噪声、减少计算量、提高算法的准确性和鲁棒性,从而为后续的点云处理和分析步骤(如配准、分割和重…

实战打靶集锦-31-monitoring

文章目录 1. 主机发现2. 端口扫描3. 服务枚举4. 服务探查4.1 ssh服务4.2 smtp服务4.3 http/https服务 5. 系统提权5.1 枚举系统信息5.2 枚举passwd文件5.3 枚举定时任务5.4 linpeas提权 6. 获取flag 靶机地址:https://download.vulnhub.com/monitoring/Monitoring.o…

算法力扣刷题记录 四十九【112. 路径总和】和【113. 路径总和ii】

前言 二叉树篇继续。 记录 四十九【112. 路径总和】和【113. 路径总和ii】 一、【112. 路径总和】题目阅读 给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 target…

VsCode远程ssh连接失败:Could not establish connection to XXX

一、问题描述 在VsCode中按下"F1",选择Remote-SSH:Connect to Host 选择一个已经配置好的SSH主机,比如我选择的是192.168.0.104: 结果提示:Could not establish connection to XXX 二、解决方法 观察VsCode的输出信息…

走进NoSql

一、引入 1.1什么是NoSql NoSQL(Not Only SQL)是一组非关系型数据库(或称为非SQL数据库)的统称,它们提供了与传统的关系型数据库不同的数据存储和检索方式。NoSQL数据库通常用于处理大量的、分布式的、非结构化或半结…

STM32使用Wifi连接阿里云

目录 1 实现功能 2 器件 3 AT指令 4 阿里云配置 4.1 打开阿里云 4.2 创建产品 4.3 添加设备 5 STM32配置 5.1 基础参数 5.2 功能定义 6 STM32代码 本文主要是记述一下,如何使用阿里云物联网平台,创建一个简单的远程控制小灯示例。 完整工程&a…

BurpSuit的intruder模块结果进行筛选和导出

文章目录 一、搭建的测试网站第一步 先抓去数据包,查看数据包第二步 可以控制返回信息一条一条的显示第三步 使用intrude模块进行遍历,每次只显示一条用户信息第四步 配置过滤规则第五步 查看结果显示第六步 进行数据导出第七步 查看导出的表格二、实际项目中使用免责声明一、…

PCIe驱动开发(3)— 驱动设备文件的创建与操作

PCIe驱动开发(3)— 驱动设备文件的创建与操作 一、前言 在 Linux 中一切皆为文件,驱动加载成功以后会在“/dev”目录下生成一个相应的文件,应用程序通过对这个名为“/dev/xxx” (xxx 是具体的驱动文件名字)的文件进行相应的操作即…

Azure Repos 仓库管理

从远端仓库克隆到本地 前提:本地要安装git,并且登录了账户 1.在要放这个远程仓库的路径下,打git 然后 git clone https://.. 如果要登录验证,那就验证下,点 generate git credentials,复制password 克隆完后,cd 到克隆的路径, 可以用 git branch -a //查看分…

Spring Cloud环境搭建

🎥 个人主页:Dikz12🔥个人专栏:Spring学习之路📕格言:吾愚多不敏,而愿加学欢迎大家👍点赞✍评论⭐收藏 目录 1. 开发环境安装 1.1 安装JDK ​1.2 安装MySQL 2. 案列介绍 2.1 …

Linux 命令 —— top命令(查看进程资源占用)

文章目录 top 命令显示信息介绍top 命令使用 top 命令显示信息介绍 top 命令是 Linux/Unix 系统中常用的进程监控工具,可以实时动态显示系统中各个进程的资源占用情况,包括CPU、内存等。 进入 linux 系统,直接输入 top,回车&…

全网超详细Redis主从部署(附出现bug原因)

主从部署 整体架构图 需要再建两个CentOs7,过程重复单机部署 http://t.csdnimg.cn/zkpBE http://t.csdnimg.cn/lUU5gLinux环境下配置redis 查看自己ip地址命令 ifconfig 192.168.187.137 进入redis所在目录 cd /opt/software/redis cd redis-stable 进入配置文件 vim redi…

书生大模型第三关-Git基础

1.任务1: 破冰活动:自我介绍 目标: 每位参与者提交一份自我介绍。 提交地址:https://github.com/InternLM/Tutorial 的 camp3 分支~ 行动: 首先Fork项目到自己Repo中,然后git clone在本地上 然后创建一个…

liunx面试题目

如何看当前Linux系统有几颗物理CPU和每颗CPU的核数? 查看物理cup: cat /proc/cpuinfo|grep -c ‘physical id’ 查看每颗cup核数 cat /proc/cpuinfo|grep -c ‘processor’ 若希望自动实现软件包的更新,可以使用yum-cron并启动该服务 yum -y …

【java计算机毕设】农产品仓库管理系统系统MySQL ssm JSP maven项目代码+文档 前后端一体 暑假作业

目录 1项目功能 2项目介绍 3项目地址 1项目功能 【java计算机毕设】农产品仓库管理系统系统MySQL ssm vue maven项目代码文档 前后端一体 暑假作业 2项目介绍 系统功能: 农产品仓库管理包括管理员、用户俩种角色。 管理员功能包括个人中心模块用于修改个人信息和…