opencv学习:图像视频的读取截取部分图像数据颜色通道提取合并颜色通道边界填充数值计算图像融合

news2024/11/23 10:17:08

一、计算机眼中的图像

1.图像操作

构成像素点的数字在0~255之间

RGB叫做图像的颜色通道

 h=500,w=500

 

 2.灰度图像

3. 彩色图像

 4.图像的读取

 5.视频的读取

cv2.VideoCapture()--在OpenCV中,可以使用VideoCapture来读取视频文件,或是摄像头数据。

cv2.VideoCapture.isOpened()--判断文件打开是否成功,可以使用cv2.VideoCapture.isOpened()这个函数。

cv2.VideoCapture.read()--cv2.VideoCapture.read()提供了一个最简单的视频帧处理方式,集合了抓起Grab(),解码retrieve()两个功能,返回解码之后的数据。需要特别注意的是,如果获取到空帧,抓取失败或是文件结束,返回值会是一个空指针

示例:

VideoCapture也是支持读取摄像头的,提供rtsp码流即码流地址,

 二

1.截取部分图像数据
import os   
import cv2 
 
# 遍历指定目录,显示目录下的所有文件名
def CropImage4File(filepath,destpath):
    pathDir =  os.listdir(filepath)    # 列出文件路径中的所有路径或文件
    for allDir in pathDir:
        child = os.path.join(filepath, allDir)
        dest = os.path.join(destpath,allDir)
        if os.path.isfile(child):
        	image = cv2.imread(child) 
            sp = image.shape            #获取图像形状:返回【行数值,列数值】列表
            sz1 = sp[0]                 #图像的高度(行 范围)
            sz2 = sp[1]                 #图像的宽度(列 范围)
            #sz3 = sp[2]                #像素值由【RGB】三原色组成
            
            #你想对文件的操作
            a=int(sz1/2-64) # x start
            b=int(sz1/2+64) # x end
            c=int(sz2/2-64) # y start
            d=int(sz2/2+64) # y end
            cropImg = image[a:b,c:d]   #裁剪图像
            cv2.imwrite(dest,cropImg)  #写入图像路径
           
if __name__ == '__main__':
    filepath ='F:\\\maomi'             #源图像
    destpath='F:\\maomi_resize'        # resized images saved here
    CropImage4File(filepath,destpath)
2. 截取部分图像数据-批量处理
"""
处理数据集 和 标签数据集的代码:(主要是对原始数据集裁剪)
    处理方式:分别处理
    注意修改 输入 输出目录 和 生成的文件名
    output_dir = "./label_temp"
    input_dir = "./label"
"""
import cv2
import os
import sys
import time


def get_img(input_dir):
    img_paths = []
    for (path,dirname,filenames) in os.walk(input_dir):
        for filename in filenames:
            img_paths.append(path+'/'+filename)
    print("img_paths:",img_paths)
    return img_paths


def cut_img(img_paths,output_dir):
    scale = len(img_paths)
    for i,img_path in enumerate(img_paths):
        a = "#"* int(i/1000)
        b = "."*(int(scale/1000)-int(i/1000))
        c = (i/scale)*100
        time.sleep(0.2)
        print('正在处理图像: %s' % img_path.split('/')[-1])
        img = cv2.imread(img_path)
        weight = img.shape[1]
        if weight>1600:                         # 正常发票
            cropImg = img[50:200, 700:1500]    # 裁剪【y1,y2:x1,x2】
            #cropImg = cv2.resize(cropImg, None, fx=0.5, fy=0.5,
                                 #interpolation=cv2.INTER_CUBIC) #缩小图像
            cv2.imwrite(output_dir + '/' + img_path.split('/')[-1], cropImg)
        else:                                        # 卷帘发票
            cropImg_01 = img[30:150, 50:600]
            cv2.imwrite(output_dir + '/'+img_path.split('/')[-1], cropImg_01)
        print('{:^3.3f}%[{}>>{}]'.format(c,a,b))

if __name__ == '__main__':
    output_dir = "../img_cut"           # 保存截取的图像目录
    input_dir = "../img"                # 读取图片目录表
    img_paths = get_img(input_dir)
    print('图片获取完成 。。。!')
    cut_img(img_paths,output_dir)
3. 多进程(加快处理)
#coding: utf-8
"""
采用多进程加快处理。添加了在读取图片时捕获异常,OpenCV对大分辨率或者tif格式图片支持不好
处理数据集 和 标签数据集的代码:(主要是对原始数据集裁剪)
    处理方式:分别处理
    注意修改 输入 输出目录 和 生成的文件名
    output_dir = "./label_temp"
    input_dir = "./label"
"""
import multiprocessing
import cv2
import os
import time


def get_img(input_dir):
    img_paths = []
    for (path,dirname,filenames) in os.walk(input_dir):
        for filename in filenames:
            img_paths.append(path+'/'+filename)
    print("img_paths:",img_paths)
    return img_paths


def cut_img(img_paths,output_dir):
    imread_failed = []
    try:
        img = cv2.imread(img_paths)
        height, weight = img.shape[:2]
        if (1.0 * height / weight) < 1.3:       # 正常发票
            cropImg = img[50:200, 700:1500]     # 裁剪【y1,y2:x1,x2】
            cv2.imwrite(output_dir + '/' + img_paths.split('/')[-1], cropImg)
        else:                                   # 卷帘发票
            cropImg_01 = img[30:150, 50:600]
            cv2.imwrite(output_dir + '/' + img_paths.split('/')[-1], cropImg_01)
    except:
        imread_failed.append(img_paths)
    return imread_failed


def main(input_dir,output_dir):
    img_paths = get_img(input_dir)
    scale = len(img_paths)

    results = []
    pool = multiprocessing.Pool(processes = 4)
    for i,img_path in enumerate(img_paths):
        a = "#"* int(i/10)
        b = "."*(int(scale/10)-int(i/10))
        c = (i/scale)*100
        results.append(pool.apply_async(cut_img, (img_path,output_dir )))
        print('{:^3.3f}%[{}>>{}]'.format(c, a, b)) # 进度条(可用tqdm)
    pool.close()                        # 调用join之前,先调用close函数,否则会出错。
    pool.join()                         # join函数等待所有子进程结束
    for result in results:
        print('image read failed!:', result.get())
    print ("All done.")



if __name__ == "__main__":
    input_dir = "D:/image_person"       # 读取图片目录表
    output_dir = "D:/image_person_02"   # 保存截取的图像目录
    main(input_dir, output_dir)
 4.颜色通道提取

在OpenCV中,cv2.split() 函数用于将多通道数组(如彩色图像)拆分为多个单通道数组。彩色图像通常由多个颜色通道组成,例如BGR(蓝绿红)彩色空间中的三个通道。cv2.split() 函数将这些通道拆分为独立的数组,每个数组只包含一个通道的信息。

以下是使用 cv2.split() 的示例代码:

import cv2

# 读取一张彩色图片
image = cv2.imread('path_to_your_color_image.jpg')

# 使用 cv2.split() 拆分通道
b, g, r = cv2.split(image)

# 此时,b, g, r 分别包含蓝色、绿色和红色通道的图像数据

# 如果你想查看每个通道的图像,可以这样做:
cv2.imshow('Blue Channel', b)
cv2.imshow('Green Channel', g)
cv2.imshow('Red Channel', r)

# 等待按键,然后关闭窗口
cv2.waitKey(0)
cv2.destroyAllWindows()
 5.合并颜色通道

cv2.merge() 是 OpenCV 中用来合并多个单通道图像为一个多通道图像的函数。它的工作原理与 cv2.split() 相反。如果你有几个单通道图像(例如,从 cv2.split() 得到的),并且你想将它们合并成一个多通道图像(例如,一个彩色图像),那么你可以使用 cv2.merge()。

以下是 cv2.merge() 的基本用法:

import cv2

# 假设你有三个单通道图像:b, g, r
# 这些通常是通过 cv2.split() 从一个彩色图像中得到的
b = ... # 蓝色通道图像
g = ... # 绿色通道图像
r = ... # 红色通道图像

# 使用 cv2.merge() 将它们合并为一个彩色图像
bgr_image = cv2.merge([b, g, r])

# 现在 bgr_image 是一个包含 b, g, r 三个通道的彩色图像

在 cv2.merge() 函数中,你需要传递一个列表作为参数,该列表包含你想要合并的所有单通道图像。合并的顺序很重要,因为它决定了输出图像中通道的顺序。在上述示例中,我们按照 BGR(蓝绿红)的顺序合并了通道,这是 OpenCV 中彩色图像的标准通道顺序。

如果你想合并的通道顺序与 BGR 不同,例如 RGB(红绿蓝)顺序,你需要相应地调整通道的顺序:

rgb_image = cv2.merge([r, g, b])

请注意,cv2.merge() 要求所有输入图像都具有相同的大小和类型。如果它们的大小或类型不匹配,函数将抛出一个错误。

在处理图像时,理解通道的顺序和类型非常重要,因为不同的图像处理库和函数可能会使用不同的通道顺序和数据类型。OpenCV 使用 BGR 顺序,而一些其他库(如 PIL/Pillow)则使用 RGB 顺序。因此,在将图像从一个库传递到另一个库时,可能需要进行通道顺序的转换。

6.边界填充

cv2.copyMakeBorder() 是 OpenCV 库中的一个函数,用于在图像周围创建边框。cv2.copyMakeBorder(src,top,bottom,left,right,borderType,value)

下面是该函数的参数及其解释:

src:要处理的输入图像。
top:在源图像的顶部添加的像素数目。
bottom:在源图像的底部添加的像素数目。
left:在源图像的左侧添加的像素数目。
right:在源图像的右侧添加的像素数目。
borderType:边框类型,可以是以下之一:
cv2.BORDER_CONSTANT:添加一个常量值的边框。此时需要提供一个value参数,用于指定常量值。
cv2.BORDER_REPLICATE:复制源图像的边界像素。
cv2.BORDER_REFLECT:对源图像的边界进行反射,比如:fedcba|abcdefgh|hgfedcb
cv2.BORDER_REFLECT_101:对源图像的边界进行反射,但略微不同,比如:gfedcb|abcdefgh|gfedcba
cv2.BORDER_WRAP:对源图像的边界进行包装,比如:cdefgh|abcdefgh|abcdefg
value(可选):当borderType为cv2.BORDER_CONSTANT时,指定的常量值。
该函数返回一个新的图像,其大小为原始图像加上指定边框大小,并且根据指定的边框类型进行填充。

 示例代码:

image = cv2.imread('./img/dog21.png')
image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
# 定义填充参数
top_border = 10
bottom_border = 10
left_border = 10
right_border = 10

# 使用常数填充,填充值为0
bordered_image_constant = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_CONSTANT, value=0)

# 使用边界复制
bordered_image_replicate = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_REPLICATE)

# 使用边界反射
bordered_image_reflect = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_REFLECT)

# 使用边界反射101
bordered_image_reflect_101 = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_REFLECT_101)

# 使用边界包裹
bordered_image_wrap = cv2.copyMakeBorder(image, top_border, bottom_border, left_border, right_border, cv2.BORDER_WRAP)




# 创建子图
fig, ((ax1, ax2, ax3),(ax4, ax5,ax6)) = plt.subplots(2, 3, figsize=(20, 10), sharex=True, sharey=True)



# 显示图像
ax1.imshow(image.copy())
ax1.set_title('original')
ax2.imshow(bordered_image_constant)
ax2.set_title('constant')
ax3.imshow(bordered_image_replicate, cmap='gray')
ax3.set_title('replicate')
ax4.imshow(bordered_image_reflect, cmap='gray')
ax4.set_title('reflect')
ax5.imshow(bordered_image_reflect_101, cmap='gray')
ax5.set_title('reflect_101')
ax6.imshow(bordered_image_wrap, cmap='gray')
ax6.set_title('wrap')
plt.show()

Python OpenCV库中的边界填充通常用于图像处理,比如二值化后的边缘增强、腐蚀膨胀操作后的填补空洞等。边界填充函数cv2.floodFill()是一个常用工具。这个函数会在指定起点周围填充特定颜色,直到遇到另一个更大区域或者达到边界条件。

以下是一个基本的使用示例:

import cv2
import numpy as np

# 假设img是你的输入图像,前景像素是白色,背景是黑色
img = ...  # 你的图像数组

# 定义起始点和填充的颜色
seed_point = (x, y)  # 起始填充点的坐标
new_color = (255, 255, 255)  # 填充的新颜色,这里是白色

# 应用 floodFill
mask = np.zeros(img.shape[:2], dtype=np.uint8)
cv2.floodFill(img, mask, seed_point, new_color)

# 显示结果
cv2.imshow("Filled Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
 7.数值计算

 

 cv2.add()函数中,如果像素点相加之和超过255则最大只能为255,不超过则不变

8.图像融合

两个图片shape值如果不一样不能做数值计算

resize函数

 

 

 1.图像尺寸调整
cv2.resize(img,(w,h)):调整图像img尺寸到w*h;
cv2.resize(img,(0,0),fx=3,fy=1):将w、h设置为0,fx为x向相对原图的比例,fy为y向相对于原图的比例,fx与fy大于1时图像为放大,小于1时为缩小。
2.图像融合
imgf=cv2.addWeighted(img1,α,img2,β,b)
img1与img2为需要融合的图像
α和β为两张图的融合系数
b为图像偏置量
计算方式:imgf=α×img1+β×img2+b
注意:两张可融合的图片必须尺寸一致,如不一致,需通过resize操作调整为一致方可融合
示例代码

import cv2
import os
os.chdir('e://text')
img1=cv2.imread('wanzi.png')
img2=cv2.imread('car.jpg')
def cv_show(name,img):
    cv2.imshow(name,img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
print(img1.shape)
print(img2.shape)
img2=cv2.resize(img2,(396,203))
#注意此句,img.shape的数值时(h,w),而resize需要的输入是(w,h),两者是颠倒的
print(img2.shape)
a=cv2.addWeighted(img,1,img2,0.5,0)
#注意:相加后,像素中加和超过255的值会被置为255
cv_show('a',a)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1931308.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

前缀和算法——部分OJ题详解

&#xff08;文章的题目解释可能存在一些问题&#xff0c;欢迎各位小伙伴私信或评论指点&#xff08;双手合十&#xff09;&#xff09; 关于前缀和算法 前缀和算法解决的是“快速得出一个连续区间的和”&#xff0c;以前求区间和的时间复杂度是O(N)&#xff0c;使用前缀和可…

关于springboot的@DS(““)多数据源的注解无法生效的原因

对于com.baomidou.dynamic.datasource.annotation的DS注解&#xff0c;但凡有一个AOP的修改都会影响到多数据源无法生效的问题&#xff0c;本次我是添加了方法上添加了Transactional&#xff0c;例如下图&#xff1a; 在方法上写了这个注解&#xff0c;会影响到DS("db2&qu…

MODEL4高性价比工业级HMI芯片在喷码机解决方案中的应用

一、概述 随着工业自动化与智能化的发展&#xff0c;喷码机作为标识设备在各行各业中扮演着至关重要的角色。为满足市场对于高效、精准、灵活喷码的需求&#xff0c;我们推出了基于MODEL4工业级HMI芯片的喷码机解决方案。 该方案集成了高性能国产嵌入式64位RISC-V内核芯片组&…

<数据集>铁轨缺陷检测数据集<目标检测>

数据集格式&#xff1a;VOCYOLO格式 图片数量&#xff1a;844张 标注数量(xml文件个数)&#xff1a;844 标注数量(txt文件个数)&#xff1a;844 标注类别数&#xff1a;3 标注类别名称&#xff1a;[Spalling, Squat, Wheel Burn] 序号类别名称图片数框数1Spalling3315522…

集线器、交换机、路由器的区别,冲突域、广播域

冲突域 定义&#xff1a;同一时间内只能有一台设备发送信息的范围。 分层&#xff1a;基于OSI模型的第一层物理层。 广播域 定义&#xff1a;如果某个站点发出一个广播信号&#xff0c;所有能接受到这个信号的设备的范围称为一个广播域。 分层&#xff1a;基于OSI模型的第二…

绿色水利,智慧未来:数字孪生技术在智慧水库建设中的应用,助力实现水资源的可持续利用与环境保护的双赢

本文关键词&#xff1a;智慧水利、智慧水利工程、智慧水利发展前景、智慧水利技术、智慧水利信息化系统、智慧水利解决方案、数字水利和智慧水利、数字水利工程、数字水利建设、数字水利概念、人水和协、智慧水库、智慧水库管理平台、智慧水库建设方案、智慧水库解决方案、智慧…

【Python】open()函数的全面解析:如何读取和写入文件

文章目录 1. 基本用法&#xff1a;打开文件2. 不同模式的使用3. 文件读取方法3.1 readline()方法3.2 readlines()方法 4. 上下文管理器5. 错误处理6. 小结 在编程过程中&#xff0c;文件操作是一个非常常见的任务&#xff0c;而Python的open()函数是进行文件操作的基础。通过op…

Sparse4D-v3:稀疏感知的性能优化及端到端拓展

极致的感知性能与极简的感知pipeline一直是牵引我们持续向前的目标。为了实现该目标&#xff0c;打造一个性能优异的端到端感知模型是重中之重&#xff0c;充分发挥深度神经网络数据闭环的作用&#xff0c;才能打破当前感知系统的性能上限&#xff0c;解决更多的corner case&am…

分布式 I/O 系统Modbus TCP 耦合器BL200

BL200 耦合器是一个数据采集和控制系统&#xff0c;基于强大的 32 位微处理器设计&#xff0c;采用 Linux 操作系统&#xff0c;可以快速接入现场 PLC、SCADA 以及 ERP 系统&#xff0c; 内置逻辑控制、边缘计算应用&#xff0c;支持标准 Modbus TCP 服务器通讯&#xff0c;以太…

Ubuntu Desktop Docker 配置代理

Ubuntu Desktop Docker 配置代理 主要解决 docker pull 拉取不了镜像问题. Docker Desktop 配置代理 这个比较简单, 直接在 Docker Desktop 里设置 Proxies, 示例如下: http://127.0.0.1:7890 Docker Engine 配置代理 1.Docker Engine 使用下面配置文件即可, root 用户可…

Java面试八股之简述单例redis并发承载能力

简述单例redis并发承载能力 单例Redis实例的并发承载上限受到多种因素的影响&#xff0c;包括但不限于硬件性能、网络条件、数据集大小、操作类型以及Redis自身的配置。以下是几个关键因素的详细说明&#xff1a; 硬件性能&#xff1a; CPU&#xff1a;Redis主要依赖于CPU的…

服务器基础1

服务器基础复习01 1.环境部署 系统&#xff1a;华为欧拉系统 网络简单配置nmtui 因为华为欧拉系统密码需要复杂度 所以我们可以进入后更改密码 echo 123 | passwd --stdin root也可以 echo "root:123" | chpasswd2.关闭防火墙&#xff0c;禁用SElinux 首先先关…

BlueToothLE 拓展中writeBytesWithResponse与writeBytes有什么区别?

writeBytesWithResponse与writeBytes有什么区别&#xff1f; 根据文档&#xff0c;有WithRespon的&#xff0c;会触发一个 BytesWritten 事件&#xff0c;另一个不触发这个事件&#xff1a;App Inventor 2 低功耗蓝牙 BlueToothLE 拓展 App Inventor 2 中文网

SQl server 练习3

课后作业 在homework库下执行&#xff1a; CREATE TABLE user_profile_2 ( id int NOT NULL, device_id int NOT NULL, gender varchar(14) NOT NULL, age int , university varchar(32) NOT NULL, gpa float, active_days_within_30 float, question_cnt float, answer_cnt fl…

昇思25天学习打卡营第14天|DCGAN 与漫画头像生成:原理剖析与训练实战

目录 数据集下载 数据处理 构建生成器 构建判别器 模型训练 结果展示 数据集下载 首先尝试卸载已安装的 mindspore 库&#xff0c;然后通过指定的镜像源安装特定版本&#xff08;2.2.14&#xff09;的 mindspore 库。从指定的 URL 下载一个 zip 文件到当前目录下的 ./faces…

kubernetes k8s Deployment 控制器配置管理 k8s 红蓝部署 金丝雀发布

目录 1、Deployment控制器&#xff1a;概念、原理解读 1.1 Deployment概述 1.2 Deployment工作原理&#xff1a;如何管理rs和Pod&#xff1f; 2、Deployment资源清单文件编写技巧 3、Deployment使用案例&#xff1a;创建一个web站点 4、Deployment管理pod&#xff1a;扩…

信创学习笔记(三),信创之操作系统OS思维导图

创作不易 只因热爱!! 热衷分享&#xff0c;一起成长! “你的鼓励就是我努力付出的动力” 一. 回顾信创CPU芯片 1. x86应用生态最丰富, 海光(3,5,7)授权较新,无桌面授权,多用于服务器 兆芯(ZX, KX, KH)授权较早期. 2. ARMv8移动端应用生态丰富, 华为鲲鹏(9) ,制裁中&#xff0c;…

JWT令牌详细解析

JWT令牌 前言一、JWT是什么&#xff1f;二、JWT与传统CookieSession的对比三、JWT1. JWT的功能2. JWT的结构3. JWT的使用 前言 主要介绍了SpringBoot集成JWT令牌详细说明,JWT方式校验方式更加简单便捷化&#xff0c;无需通过redis缓存&#xff0c;而是直接根据token取出保存的…

前端报错adding CSS “touch-action: none“ to this element解决方案

目录 如图所示控制台出现报错&#xff1a; 原因&#xff1a; touch-action 介绍&#xff1a; 解决方案&#xff1a; 1.手动设置touch-action&#xff1a; 2.使用条件渲染&#xff1a; 3.CSS样式隔离&#xff1a; 4.浏览器兼容性&#xff1a; 5. 忽略警告 如图所示控制台…

持续集成04--Jenkins结合Gitee创建项目

前言 在持续集成/持续部署&#xff08;CI/CD&#xff09;的旅途中&#xff0c;Jenkins与版本控制系统的紧密集成是不可或缺的一环。本篇“持续集成03--Jenkins结合Gitee创建项目”将引导如何将Jenkins与Gitee&#xff08;一个流行的Git代码托管平台&#xff09;相结合&#xff…