第一部分:C++入门

news2024/11/15 3:57:51

目录

前言

1、C++关键字(C++98)

2、命名空间

2.1、命名空间定义

2.2、命名空间的使用

3、C++输入&输出

4、缺省参数

4.1、缺省参数的概念

4.2、缺省参数的分类

5、函数重载

5.1、函数重载的概念

5.2、C++支持函数重载的原理

6、引用

6.1、引用的概念

6.2、引用特性

6.3、常引用

6.4、使用场景

6.5、传值、传引用效率

6.6、引用和指针的区别

7、内联函数

7.1、概念

7.2、特性

8、auto关键字(C++11)

8.1、类型别名思考

8.2、auto简介

8.3、auto的使用细则

8.4、auto不能推导的场景

9、基于范围的for循环(C++11)

9.1、范围for的语法

9.2、范围for的使用条件

10、指针空值nullptr(C++11)

10.1、C++98中的指针空值

10.2、nullptr(C++11)


前言

C++是在C的基础之上,容纳进去了面向对象编程思想,并增加了许多有用的库,以及编程范式 等。学习这一部分就不再重复之前的C语言的内容。

C++是兼容C语言的,也就是说可以使用之前的C语言的语法。

1、C++关键字(C++98)

C++总计63个关键字,C语言32个关键字。这里只是总览一下C++的关键字,等到学到的时候再进行具体讲解。

2、命名空间

在C/C++中,变量、函数和后面要学到的类都是大量存在的,这些变量、函数和类的名称将存在于全局作用域中,可能会导致很多冲突。使用命名空间的目的是对标识符的名称进行本地化, 以避免命名冲突或名字污染,namespace关键字的出现就是针对这种问题的。

例如:

#include<stdio.h>
#include<stdlib.h>//加上这个就会报错,不加这个就可以正常运行

int rand = 10;

int main()
{
    printf("%d ", rand);
    return 0;
}
//这个是我们自己定义的名字与库里面的名字冲突,在
//项目组中,多个人之间定义的名字冲突

编译后后报错:error C2365: “rand”: 重定义;以前的定义是“函数”。

 C语言没办法解决类似这样的命名冲突问题,所以C++提出了用namespace来解决。

2.1、命名空间定义

定义命名空间,需要使用到namespace关键字,后面跟命名空间的名字,然后接一对{}即可,{} 中即为命名空间的成员。命名空间域只影响使用,不影响生命周期。

例如:

namespace bit//同一个域中不能有同名的变量,不同的域中可以有同名的变量。
{
    // 命名空间中可以定义变量/函数/类型
    int rand = 10;

    int Add(int left, int right)
    {
        return left + right;
    }
  
    struct Node
    {
        struct Node* next;
        int val;
    };
}


//命名空间是可以嵌套的
// test.cpp
namespace N1
{
    int a;
    int b;
    int Add(int left, int right)
    {
        return left + right;
    }
    namespace N2
    {
        int c;
        int d;
        int Sub(int left, int right)
        {
            return left - right;
        }
    }
}

//同一个工程中允许存在多个相同名称的命名空间,编译器最后会合成同一个命名空间中。
//比如:一个工程中的test.h和上面test.cpp中两个N1会被合并成一个
// test.h
namespace N1
{
    int Mul(int left, int right)
    {
        return left * right;
    }
}

注意:一个命名空间就定义了一个新的作用域,命名空间中的所有内容都局限于该命名空间中

另外,计算机识别变量是先从局部找,局部找不到,再去全局找。编译器默认是不会去命名空间中找变量的。

2.2、命名空间的使用

例如:

namespace bit
{
    // 命名空间中可以定义变量/函数/类型
    int a = 0;
    int b = 1;
    int Add(int left, int right)
    {
        return left + right;
    }
    struct Node
    {
        struct Node* next;
        int val;
    };
}
int main()
{
    // 编译报错:error C2065: “a”: 未声明的标识符
    printf("%d\n", a);
    return 0;
}

命名空间的使用有三种方式:

1、加命名空间名称及作用域限定符(指定展开的对象)

int main()
{
    printf("%d\n", bit::a);
    return 0;
}

2、使用using将命名空间中某个成员引入(部分展开)

using bit::b;
int main()
{
    printf("%d\n", bit::a);
    printf("%d\n", b);
    return 0;
}

3、使用using namespace 命名空间名称引入(全局展开,但一般不建议这样使用)

using namespace bit;
int main()
{
    printf("%d\n", bit::a);
    printf("%d\n", b);
    Add(10, 20);
    return 0;
}

举个结构体的例子:

namespace bit1
{
	struct A
	{};
	int min;
}

namespace bit2
{
	struct A
	{};
	int min;
}

int main()
{
	struct bit1::A a;//注意这里的使用方法
	struct bit2::A b;
	bit1::min++;
	bit2::min++;

	return 0;
}

3、C++输入&输出

例如:

#include<iostream>
// std是C++标准库的命名空间名,C++将标准库的定义实现都放到这个命名空间中
using namespace std;
int main()
{
    cout << "Hello world!!!" << endl;
    return 0;
}
//这里的endl等价于'\n',改写为cout<<"hello world!!!"<<'\n';也是一样的效果

说明:

1. 使用cout标准输出对象(控制台)和cin标准输入对象(键盘)时,必须包含< iostream >头文件以及按命名空间使用方法使用std。

2. cout和cin是全局的流对象,endl是特殊的C++符号,表示换行输出,他们都包含在包含< iostream >头文件中。

3.<<是流插入运算符,>>是流提取运算符。

4. 使用C++输入输出更方便,不需要像printf/scanf输入输出时那样,需要手动控制格式。 C++的输入输出可以自动识别变量类型。

5. 实际上cout和cin分别是ostream和istream类型的对象,>>和<<也涉及运算符重载等知识, 这些知识我们我们后续才会学习,所以我们这里只是简单学习他们的使用。后面我们还会更深入的学习IO流用法及原理。

注意:早期标准库将所有功能在全局域中实现,声明在.h后缀的头文件中,使用时只需包含对应头文件即可,后来将其实现在std命名空间下,为了和C头文件区分,也为了正确使用命名空间, 规定C++头文件不带.h;旧编译器(vc 6.0)中还支持格式,后续编译器已不支持,因此推荐使用<iostream>+std的方式。

例如:

#include <iostream>
using namespace std;
int main()
{
    int a;
    double b;
    char c;

    // 可以自动识别变量的类型
    cin >> a;
    cin >> b >> c;

    cout << a << endl;
    cout << b << " " << c << endl;
    return 0;
}

关于cout和cin还有很多更复杂的用法,比如控制浮点数输出精度,控制整形输出进制格式等等。因为C++兼容C语言的用法,这些又用得不是很多,我们这里就不展开学习了。后续如果有需要,再配合文档学习。

std命名空间的使用惯例:

1. 在日常练习中,建议直接using namespace std即可,这样就很方便。

2. using namespace std展开,标准库就全部暴露出来了,如果我们定义跟库中的类型/对象/函数重名,就存在冲突问题。该问题在日常练习中很少出现,但是项目开发中代码较多、规模大,就很容易出现。所以建议在项目开发中使用,像std::cout这样使用时指定命名空间 或 using std::cout展开常用的库对象/类型等方式。

4、缺省参数

4.1、缺省参数的概念

缺省参数是声明或定义函数时为函数的参数指定一个缺省值。在调用该函数时,如果没有指定实 参则采用该形参的缺省值,否则使用指定的实参。

void Func(int a = 0)
{
    cout << a << endl;
}
int main()
{
    Func();     // 没有传参时,使用参数的默认值
    Func(10);   // 传参时,使用指定的实参
    return 0;
}

4.2、缺省参数的分类

1、全缺省参数

void Func(int a = 10, int b = 20, int c = 30)
{
    cout << "a = " << a << endl;
    cout << "b = " << b << endl;
    cout << "c = " << c << endl;
}

使用缺省值的时候,必须从左向右连续使用,不可空着。例如:

//下面的四种使用方法是支持的
Func(1,2,3);
Func(1,2);
Func(1);
Func();
//下面的两种使用方法是错误的
Func(, 2, );
Func(, , 3);

2、半缺省参数(必须从右往左连续缺省)

void Func(int a, int b = 10, int c = 20)
{
    cout << "a = " << a << endl;
    cout << "b = " << b << endl;
    cout << "c = " << c << endl;
}

注意:

1. 半缺省参数必须从右往左依次来给出,不能间隔着给。

2. 缺省参数不能在函数声明和定义中同时出现(否则会报错)。(只能给其中的一个,但是我们一般建议给函数声明,如果声明和定义不在一个文件的话,就把缺省参数给声明不能给定义)。

3. 缺省值必须是常量或者全局变量。

4. C语言不支持(编译器不支持)。

5、函数重载

5.1、函数重载的概念

函数重载:是函数的一种特殊情况,C++允许在同一作用域中声明几个功能类似的同名函数,这 些同名函数的形参列表(参数个数 或 类型 或 类型顺序)不同,常用来处理实现功能类似数据类型 不同的问题。

#include<iostream>
using namespace std;

// 1、参数类型不同
int Add(int left, int right)
{
    cout << "int Add(int left, int right)" << endl;
    return left + right;
}

double Add(double left, double right)
{
    cout << "double Add(double left, double right)" << endl;
    return left + right;
}

// 2、参数个数不同
void f()
{
    cout << "f()" << endl;
}
void f(int a)
{
 cout << "f(int a)" << endl;
}

// 3、参数类型顺序不同
void f(int a, char b)
{
    cout << "f(int a,char b)" << endl;
}

void f(char b, int a)
{
    cout << "f(char b, int a)" << endl;
}

int main()
{
    Add(10, 20);
    Add(10.1, 20.2);
    f();
    f(10);
    f(10, 'a');
    f('a', 10);
    return 0;
}

5.2、C++支持函数重载的原理

在C/C++中,一个程序要运行起来,需要经历以下几个阶段:预处理、编译、汇编、链接。

1. 实际项目通常是由多个头文件和多个源文件构成,而通过C语言阶段学习的编译链接,我们可以知道,【当前a.cpp中调用了b.cpp中定义的Add函数时】,编译后链接前,a.o的目标文件中没有Add的函数地址,因为Add是在b.cpp中定义的,所以Add的地址在b.o中。那么怎么办呢?

2. 所以链接阶段就是专门处理这种问题,链接器看到a.o调用Add,但是没有Add的地址,就 会到b.o的符号表中找Add的地址,然后链接到一起。(回顾一下)

3. 那么链接时,面对Add函数,链接接器会使用哪个名字去找呢?这里每个编译器都有自己的函数名修饰规则。

4. 由于Windows下vs的修饰规则过于复杂,而Linux下g++的修饰规则简单易懂,下面我们使用了g++演示了这个修饰后的名字。

5. 通过下面我们可以看出gcc的函数修饰后名字不变。而g++的函数修饰后变成【_Z+函数长度 +函数名+类型首字母】。

例如:

1、采用C语言编译器编译后结果

结论:在linux下,采用gcc编译完成后,函数名字的修饰没有发生改变。

2、采用C++编译器编译后结果

结论:在linux下,采用g++编译完成后,函数名字的修饰发生改变,编译器将函数参数类型信息添加到修改后的名字中。

3、Windows下名字修饰

对比Linux会发现,windows下vs编译器对函数名字修饰规则相对复杂难懂,但道理都是类似的,我们就不做细致的研究了。

6. 通过这里就理解了C语言没办法支持重载,因为同名函数没办法区分。而C++是通过函数修饰规则来区分,只要参数不同,修饰出来的名字就不一样,就支持了重载。

7. 如果两个函数函数名和参数是一样的,返回值不同是不构成重载的,因为调用时编译器没办法区分。

6、引用

6.1、引用的概念

引用不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空 间,它和它引用的变量共用同一块内存空间。

类型& 引用变量名(对象名) = 引用实体;

void TestRef()
{
    int a = 10;
    int& ra = a;//<====定义引用类型
    printf("%p\n", &a);
    printf("%p\n", &ra);
}
//a和ra的地址是一样的

注意:引用类型必须和引用实体是同种类型的

6.2、引用特性

1. 引用在定义时必须初始化

2. 一个变量可以有多个引用,引用变量本身还可以被引用。

3. 引用一旦引用一个实体,再不能引用其他实体

例如:

void TestRef()
{
    int a = 10;
    // int& ra;   // 该条语句编译时会出错,未初始化
    int& ra = a;
    int& rra = a;
    printf("%p %p %p\n", &a, &ra, &rra);
}

6.3、常引用

无论强制类型转换还是隐式类型转换都会产生中间变量,这个中间变量是临时的,具有常性。指针和引用在赋值或初始化时,权限可以缩小,但是不能放大。

void TestConstRef()
{
    const int a = 10;
    //int& ra = a;   // 该语句编译时会出错,a为常量,权限被放大了
    const int& ra = a;
    // int& b = 10; // 该语句编译时会出错,b为常量
    const int& b = 10;
    double d = 12.34;
    //int& rd = d; // 该语句编译时会出错,类型不同
    const int& rd = d;
}

6.4、使用场景

1、做参数

例如:这样的好处就是我们可以使用引用来取代一部分使用指针的场景。

void Swap(int& left, int& right)
{
    int temp = left;
    left = right;
    right = temp;
}

2、做返回值

例如:

int& Count()
{
    static int n = 0;
    n++;
    // ...
    return n;
}

int main()
{
    int ret = Count();
    return 0;
}

如果没有上面的static和返回值的引用的话,n在出作用域后就被销毁了,之所以能让ret被赋值是因为n在销毁之前会给一个临时变量,让这个临时变量给ret来赋值。如果仅有static的话,n在出作用域后不会被销毁,但n仍不会直接赋值给ret,仍要先给一个临时变量,让这个临时变量给ret赋值。如果在有static的基础上,加上返回值的引用的话,就相当于给返回值n取了一个别名,返回了n的别名,在这个过程中就没有了临时变量这个中间量,效率就会变高。

我们看一道问题:程序在x86的环境下,运行结果为?

int& add(int a, int b)
{
    int c = a + b;
    return c;
}

int main()
{
    int& ret = add(1, 2);
    add(3, 4);
    cout << "add(1, 2) is :" << ret << endl;
    return 0;
}

所以在x86的环境下结果为7。

注意:如果函数返回时,出了函数作用域,如果返回对象还在(还没还给系统),则可以使用引用返回,如果已经还给系统了,则必须使用传值返回。返回对象的引用一般在静态、全局、上一层栈帧、以及动态内存等情况出现。

6.5、传值、传引用效率

以值作为参数或者返回值类型,在传参和返回期间,函数不会直接传递实参或者将变量本身直接返回,而是传递实参或者返回变量的一份临时的拷贝,因此用值作为参数或者返回值类型,效率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。而传引用效率也就相对较高,因为缺少中间变量带来的消耗。

6.6、引用和指针的区别

在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。

int main()
{
	int a = 10;
	int& ra = a;
	cout << "&a = " << &a << endl;
	cout << "&ra = " << &ra << endl;
	return 0;
}

但在底层实现上实际是有空间的,因为引用是按照指针方式来实现的。

注:语法概念与底层实现还是有一定差异的。从底层来看引用还是使用指针来实现的。

引用和指针的不同点:

1. 引用概念上定义一个变量的别名,指针存储一个变量地址。

2. 引用在定义时必须初始化,指针没有要求

3. 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何 一个同类型实体

4. 没有NULL引用,但有NULL指针

5. 在sizeof中含义不同:引用结果为引用类型的大小,但指针始终是地址空间所占字节个数(32 位平台下占4个字节)

6. 引用自加即引用的实体增加1,指针自加即指针向后偏移一个类型的大小。

7. 有多级指针,但是没有多级引用

8. 访问实体方式不同,指针需要显式解引用,引用编译器自己处理

9. 引用比指针使用起来相对更安全

7、内联函数

7.1、概念

以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调 用建立栈帧的开销,内联函数提升程序运行的效率。

例如:

inline int Add(int x, int y)
{
	return x + y;
}
int main()
{
	int ret = 0;
	ret = Add(2, 3);
	return 0;
}

7.2、特性

1. inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运 行效率。

2. inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。

3. inline是不能声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地址 了,链接就会找不到。(建议:直接在头文件中定义即可)

注意:在debug模式下,需要对编译器进行设置,否则内联函数是不会展开的,这样做的目的是为了方便进行调试。

例如:

// F.h
#include <iostream>
using namespace std;
inline void f(int i);
// F.cpp
#include "F.h"
void f(int i)
{
	cout << i << endl;
}
// main.cpp
#include "F.h"
int main()
{
	f(10);
	return 0;
}
// 链接错误:main.obj : error LNK2019: 无法解析的外部符号 "void __cdecl 
//f(int)" (?f@@YAXH@Z),该符号在函数 _main 中被引用

面试题:

宏的优缺点是什么?

优点:

1.增强代码的复用性。 2.提高性能。

缺点:

1.不方便调试宏。(因为预编译阶段进行了替换) 2.导致代码可读性差,可维护性差,容易误用。

3.没有类型安全的检查 。

C++有哪些技术替代宏?

1. const和enum替代宏常量

2. 内联函数替代宏函数

8、auto关键字(C++11)

8.1、类型别名思考

随着程序越来越复杂,程序中用到的类型也越来越复杂,经常体现在:

1. 类型难于拼写

2. 含义不明确导致容易出错

有人可能想到可以使用typedef来给类型取别名,使用typedef给类型取别名确实可以简化代码,但是typedef有会遇到新的难题:

typedef char* pstring;
int main()
{
	const pstring p1;// 编译成功还是失败?失败,编译后变成char* const p1;要求初始化。
	const pstring* p2;// 编译成功还是失败?成功,编译后变成char* const* p2。
	return 0;
}

在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的 类型。然而有时候要做到这点并非那么容易,因此C++11给auto赋予了新的含义。

8.2、auto简介

在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一 个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。当类型很长的时候,可以考虑使用auto进行自动推导。

例如:

int TestAuto()
{
	return 10;
}
int main()
{
	int a = 10;  //使用cout<<typeid(变量名).name()<<endl;是可以获取变量的类型信息的
	auto b = a;
	auto c = 'a';
	auto d = TestAuto();
	cout << typeid(b).name() << endl;
	cout << typeid(c).name() << endl;
	cout << typeid(d).name() << endl;
	//auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化
	return 0;
}

注意:使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto 的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为变量实际的类型。

8.3、auto的使用细则

1. auto与指针和引用结合起来使用

用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须加&。但是要注意,如果不是声明指针类型,用auto*是会报错的。

例如:

int main()
{
    int x = 10;
    auto a = &x;
    auto* b = &x;
    auto& c = x;
    cout << typeid(a).name() << endl;
    cout << typeid(b).name() << endl;
    cout << typeid(c).name() << endl;
    *a = 20;
    *b = 30;
    c = 40;
    return 0;
}

2. 在同一行定义多个变量

当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量。

例如:

void TestAuto()
{
    auto a = 1, b = 2;
    auto c = 3, d = 4.0;  // 该行代码会编译失败,因为c和d的初始化表达式类型不同
}

8.4、auto不能推导的场景

1. auto不能作为函数的参数

// 此处代码编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导
void TestAuto(auto a)
{}

2. auto不能直接用来声明数组

void TestAuto()
{
    int a[] = { 1,2,3 };
    auto b[] = { 4,5,6 };
}

3. 为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法

4. auto在实际中最常见的优势用法就是跟以后会讲到的C++11提供的新式for循环,还有 lambda表达式等进行配合使用。

9、基于范围的for循环(C++11)

9.1、范围for的语法

在C++98中如果要遍历一个数组,可以按照以下方式进行:

void TestFor()
{
    int array[] = { 1, 2, 3, 4, 5 };
    for (int i = 0; i < sizeof(array) / sizeof(array[0]); ++i)
        array[i] *= 2;
    for (int* p = array; p < array + sizeof(array) / sizeof(array[0]); ++p)
        cout << *p << endl;
}

对于一个有范围的集合而言,由程序员来说明循环的范围是多余的,有时候还会容易犯错误。因 此C++11中引入了基于范围的for循环。for循环后的括号由冒号“ :”分为两部分:第一部分是范围内用于迭代的变量,第二部分则表示被迭代的范围。例如:

void TestFor()
{      //不一定非要使用auto也是可以写具体的类型的。
    int array[] = { 1, 2, 3, 4, 5 };
    for (auto& e : array)
        e *= 2;
    for (auto e : array)//自动的依次取数组中数据赋值给e对象,自动判断结束。
        cout << e << " ";//原理就是编译时编译器进行了替换,替换为了迭代器
}
//

注意:与普通循环类似,可以用continue来结束本次循环,也可以用break来跳出整个循环。

9.2、范围for的使用条件

1. for循环迭代的范围必须是确定的

对于数组而言,就是数组中第一个元素和最后一个元素的范围;对于类而言,应该提供 begin和end的方法,begin和end就是for循环迭代的范围。

注意:以下代码就有问题,因为for的范围不确定

void TestFor(int array[])
{
    for (auto& e : array)//传参传过来的是指针,所以这样使用是不可以的。
        cout << e << endl;
}

2. 迭代的对象要实现++和==的操作。(关于迭代器这个问题,以后会提,现在提一下,没办法讲清楚,现在大家了解一下就可以了)

10、指针空值nullptr(C++11)

10.1、C++98中的指针空值

在良好的C/C++编程习惯中,声明一个变量时最好给该变量一个合适的初始值,否则可能会出现 不可预料的错误,比如未初始化的指针。如果一个指针没有合法的指向,我们基本都是按照如下 方式对其进行初始化:

void TestPtr()
{
    int* p1 = NULL;
    int* p2 = 0;
    // ……
}

NULL实际是一个宏,在传统的C头文件(stddef.h)中,可以看到如下代码:

#ifndef NULL
#ifdef __cplusplus
#define NULL   0
#else
#define NULL   ((void *)0)
#endif
#endif

可以看到,NULL可能被定义为字面常量0,或者被定义为无类型指针(void*)的常量。不论采取何 种定义,在使用空值的指针时,都不可避免的会遇到一些麻烦,比如:

void f(int)//这里就是函数重载,是可以这样写的
{
	cout << "f(int)" << endl;
}
void f(int*)
{
	cout << "f(int*)" << endl;
}
int main()
{
	f(0);
	f(NULL);
	f((int*)NULL);
	return 0;
}

程序本意是想通过f(NULL)调用指针版本的f(int*)函数,但是由于NULL被定义成0,因此与程序的 初衷相悖。

在C++98中,字面常量0既可以是一个整形数字,也可以是无类型的指针(void*)常量,但是编译器 默认情况下将其看成是一个整形常量,如果要将其按照指针方式来使用,必须对其进行强转(void *)0。

10.2、nullptr(C++11)

为了解决上面的问题,引入了nullptr来代替NULL。

注意:

1. 在使用nullptr表示指针空值时,不需要包含头文件,因为nullptr是C++11作为新关键字引入 的。

2. 在C++11中,sizeof(nullptr) 与 sizeof((void*)0)所占的字节数相同。

3. 为了提高代码的健壮性,在后续表示指针空值时建议最好使用nullptr。

到此结束,欢迎大家到评论区交流。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1927100.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

职业PDF标准 Python 下载器-CSDN

目的 下载技能人才评价网 - 职业技能标准查询系统 - PDF 打包下载 使用文件 a.json 代码解析 import base64 import requests import json import os import time# 读取JSON文件 with open(a.json, r, encodingutf-8) as f:data json.load(f) # 从名为 a.json 的文件中读…

数据库作业d8

要求&#xff1a; 一备份 1 mysqldump -u root -p booksDB > booksDB_all_tables.sql 2 mysqldump -u root -p booksDB books > booksDB_books_table.sql 3 mysqldump -u root -p --databases booksDB test > booksDB_and_test_databases.sql 4 mysql -u roo…

iPhone数据恢复:如何从iPhone恢复误删除的短信

来自iPhone的意外删除的短信可能很关键。它们可能是来自您常用应用程序、银行交易、付款收据的重要通知&#xff0c;也可能是来自朋友的重要文本、孩子的学校通知等。 如果您也从iPhone丢失了此类消息&#xff0c;我们在这里分享如何在没有备份以及有备份的情况下在iPhone上恢…

frameworks 之FallbackHome

frameworks 之FallbackHome FallbackHome 启动启动 Activity 流程创建进程ActivityThrad 与 AMS启动真正的 Launcher mActivityManagerService 创建后会启动 FallbackHome 再启动桌面程序。因为此时还没解锁&#xff0c;桌面又涉及很多其他应用程序相关&#xff0c;所以要等待用…

项目方案:社会视频资源整合接入汇聚系统解决方案(十)-视频监控汇聚应用案例和解决方案

目录 一、概述 1.1 应用背景 1.2 总体目标 1.3 设计原则 1.4 设计依据 1.5 术语解释 二、需求分析 2.1 政策分析 2.2 业务分析 2.3 系统需求 三、系统总体设计 3.1设计思路 3.2总体架构 3.3联网技术要求 四、视频整合及汇聚接入 4.1设计概述 4.2社会视频资源分…

DevToys-开源免费开发工具箱

个人觉得相较于那些在线的工具箱&#xff0c;这种离线的工具箱客户端更加可信一些。 DevToys 提供了30 个默认工具&#xff1a; 转换器&#xff1a;JSON <> YAML、日期、数字基数......编码器/解码器&#xff1a;HTML、URL、Base64、GZip、JWT、二维码......格式化程序…

【机器学习】随机森林的分类效果及进阶应用

文章目录 一、随机森林概述1.1 Bagging思想1.2 随机森林的定义1.3 随机森林的生成过程投票机制 二、随机森林的性能与优缺点2.1 分类效果的影响因素2.2 优点2.3 缺点 三、随机森林的进阶3.1 缺失值处理3.2 袋外数据&#xff08;OOB&#xff09;OOB计算方法优缺点 3.3 过拟合问题…

Deepin 安装sunix串口卡驱动

折腾了3天&#xff0c;终于搞定&#xff0c;改天上传安装过程&#xff0c;开启用c对串口传感器的编程 这种戴尔拆机卡&#xff0c;芯片用的是sunix&#xff0c;下载sunix 的linux驱动。 串口传感器用的是中盛rs485温湿度串口传感器&#xff0c;加一个rs232 转485接口 串口传感…

安全防御拓扑1

目录 实验的拓扑&#xff1a; 要求&#xff1a; 我搭建的实验拓扑 步骤&#xff1a; 创建vlan&#xff1a; 接口配置&#xff1a; 防火墙&#xff1a; 防火墙配置&#xff1a; 建立安全策略&#xff1a; 防火墙的用户&#xff1a; 办公区的市场部和研发部用户 市场部…

手机删除的文件能恢复吗?删除不等于永别,3个技巧助你找回

安卓手机中的文件&#xff0c;就像是数字世界里的繁星&#xff0c;记录着我们的点点滴滴。然而&#xff0c;有时我们可能会不小心删除了某些重要的文件&#xff0c;让我们感到惋惜和困惑。删除的文件能恢复吗&#xff1f;别担心&#xff0c;删除并不等于永别&#xff0c;我们也…

关于文档理解相关工作的一些总结

过去四年时间&#xff0c;都在处理结构化数据的存储优化相关的工作。最近一段时间在做RAG相关的工作。非结构数据的存储与检索&#xff0c;接触的也越来越多。这篇文章聊聊最近一段时间关于文档理解方面的一些心得。 文档理解 文档理解旨在从非结构化文档中提取信息并将其转化…

DockerSecret+DockerConfig介绍及使用

DockerSecret 查看官网介绍&#xff0c;Secret是daemon API 1.25之后引入的&#xff0c;它运行在swarm上的命令。 生产环境下&#xff0c;为了安全&#xff0c;我们不能把各项目的配置密码写入到配置文件。 我们可以引入docker的secret方式保护密码。 场景&#xff1a; 用…

java数组之——了解十大排序算法(动画版)

详细的冒泡排序和快速排序请查看文章&#xff1a;java数组之冒泡排序、快速排序-CSDN博客https://blog.csdn.net/weixin_44554794/article/details/140361078 一、插入排序 二、希尔排序 三、选择排序 四、堆排序 五、冒泡排序 六、快速排序 七、归并排序 八、计数排序 九、桶…

家庭海外仓怎么拓客:策略落地方法汇总

家庭海外仓因为其高度灵活性和独有的价格优势&#xff0c;还是受到很多跨境卖家欢迎的。不过作为家庭海外仓的经营者&#xff0c;想在这么激烈的竞争下稳定、持续的拿到客户&#xff0c;还是有一定难度的。今天我们就专门来聊一下家庭海外仓的拓客问题。 家庭海外仓在拓客上面临…

【开源】开源数据库工具推荐

Mysql开源工具推荐 dbeaver下载网速太慢了&#xff0c;这么好用的开源工具&#xff0c;可以从镜像站中下载&#xff1a; 下载地址&#xff1a; https://mirrors.nju.edu.cn/github-release/dbeaver/dbeaver/24.1.1/ Redis开源工具推荐 好看好用&#xff0c;UI真是做的很不…

MyBatis where标签内嵌foreach标签查询报错‘缺失右括号‘或‘命令未正确结束‘

MyBatis <where>标签内嵌<foreach>标签查询报错’缺失右括号’或’命令未正确结束’ <where>标签内嵌<foreach>标签 截取一段脱敏xml&#xff0c;写明大概意思 <select id"queryLogByIds" resultMap"BaseResultMap">SELE…

ts使用typeorm实现db创建

1.新建基础架构 ①创建项目文件名, mkdir ‘名称’ ->cd ‘文件名’ -> mkdir ‘src’->npm init mkdir fileName cd fileName mkdir src npm init在当前项目名目录下执行npm init,按照默认执行就会创建package.json. 之后执行 npm i jest/globals casl/ability bcr…

如何快速区分电子原件极性

表贴式电阻电容无极性 1表贴式.二极管 如图所示:有横杠的表示负极&#xff08;竖杠标示&#xff09;&#xff0c;注意一定要查阅数据手册在引脚信息栏一般会有 铝电解电容 手册一般会对正负极有说明 钽电容有极性 发光二极管 芯片 一般规律&#xff1a;1.看丝印朝向正对丝印的…

【C++】静态成员变量和静态成员函数(static)

为了实现多个类公用一个成员变量或函数诞生了static&#xff0c;静态成员变量和静态成员函数。 static成员变量 格式 class A { public:static 静态成员变量类型 静态成员名; } }静态成员变量必须在类外进行初始化&#xff0c;类内初始化会报错 class A { private:st…

氢气传感器TGS2616在氢燃料电池行业的应用

氢燃料电池是一种将氢气和氧气的化学能直接转换成电能的发电装置。其基本原理是电解水的逆反应&#xff0c;把氢和氧分别供给阳极和阴极&#xff0c;氢通过阳极向外扩散和电解质发生反应后&#xff0c;放出电子通过外部的负载到达阴极。 氢燃料电池具有无污染、噪声低、高效率…