探索大模型:袋鼠云在 Text To SQL 上的实践与优化

news2024/12/26 10:46:20

Text To SQL 指的是将自然语言转化为能够在关系型数据库中执行的结构化查询语言(简称 SQL)。近年来,伴随人工智能大模型技术的不断进步,Text To SQL 任务的成功率显著提升,这得益于大模型的推理、理解以及指令遵循等能力。

对于大数据平台来说,集成 Text To SQL 功能意义非凡。首先,这能够大幅优化用户体验;其次,Text To SQL 功能能够提高数据开发人员的工作效率,他们能够凭借自然语言描述来完成 SQL 任务的开发,进而极大地节省学习和编写复杂 SQL 语句的时间;最后,Text To SQL 功能降低了数据库查询的门槛,使得更多非技术人员能够参与到数据库查询工作中,让更多人得以享受大数据带来的便利。

本文将探讨袋鼠云在 Text To SQL 领域的探索与实践,分享如何实现更高效、更准确的自然语言到 SQL 的转换。

基于 LLM 实现 Text To SQL

设计基于大模型(LLM)的 Text To SQL 系统是一项复杂且精细的任务,包括多个步骤和环节,每个步骤都需要我们精心设计和处理。首先,我们需要将数据库中表的元信息进行组织。此步骤涉及到将每一个表的详细信息,如字段名称、类型、关系等,写入到向量数据库中,这样就可以为后续的 SQL 生成提供必要的信息,这一步对于后续的 SQL 生成至关重要。

接着,我们需要对用户输入的自然语言加以理解。在这一步,我们将会运用先进的 embedding 模型。凭借这种模型,能够将用户输入的语言实施向量化处理,把每一个词或者词组转化为一个具备特定维度的向量。随后,我们会前往向量数据库中展开查找,匹配相关的表元数据信息,如此一来,我们便能知晓用户的查询意图与哪些表存在关联。

最后,我们把上一步匹配所得的表元数据信息与用户的问题加以合并,生成最终的 prompt。此 prompt 包括了全部所需的信息,涵盖角色表述、用户的初始问题、我们匹配到的相关表元数据信息以及一些约束条件。而后,我们把这个 prompt 交付给 LLM 模型,让模型依据这些信息生成最终的 SQL 查询语句。这一过程需要大模型(LLM)强大的计算能力以及精准的理解能力,以保障生成的 SQL 语句能够确切地反映用户的查询意图。

file

在数栈中实现 Text To SQL

● 表 schema 写入向量数据库

file

为了便于将数据库元数据置入向量数据库,在数栈中,我们研发了能够一键导入数据库表元数据信息的功能,并且支持自动刷新,如上图所示。

在此过程里,最为重要的当属如何对表的元数据信息进行组织,这一步极为关键,因为它会直接作用于 SQL 生成的准确性。我们所设计的表元数据信息组织格式如下:

table_name(column_name column_type column_comment,[...]), table_comment=""

● 根据用户问题匹配相关表元数据

这一步所面临的关键问题在于如何精准匹配到与用户输入问题相关的所有表元数据信息。为此,我们选用了对中文支持良好的 bge-large-zh-v1.5 embedding 模型,来对用户输入的问题进行向量化处理,以便充分领会用户的意图。

而在检索元数据信息方面,我们采用了混合检索的模式,即将向量化检索与全文搜索相结合。具体来说,首先依据用户问题生成的向量,在向量数据库中匹配出 TopK 条信息;接着运用 bm25 算法对表元信息进行一次全文搜索并获取结果;最后将向量检索和全文搜索所获取的结果予以合并,并进行一次相关性排序,从而得到最终的结果。

● 生成 Prompt

构建请求大模型的 Prompt。这里分享一个小技巧,就是使用 XML 标签来分隔 Prompt 中的每一部分内容。这种方法非常有效,因为大语言模型已经接受了大量包含 XML 格式的网页内容的训练,因此能够理解其结构,这样就能很好的帮助大模型完整识别到 Prompt 中的每一部分。

如下是我们定义生成 Text To SQL 的 Prompt 模版, XML 标签中包含和用户问题相关的表元数据信息。 XML 标签中定义了角色和一些约束信息。

<context>
  表结构信息如下:
  {{表结构信息}}
</context>
<objective>
  你是一个高级SQL生成器,能够根据不同的SQL方言生成相应的SQL语句。你需要将用户输入的自然语言转化为SQL,请按照以下步骤操作:
  1. 请一步步思考并仔细分析用户的自然语言输入,确保充分理解用户的意图。
  2. 识别目标数据库类型为{{SQL方言}} SQL
  3. 考虑该数据库类型的特定语法和函数。
  4. 根据理解的用户意图,设计SQL查询的基本结构。
  5. 应用数据库特定的语法规则,对基本结构进行调整。
  6. 优化查询以提高性能(如适用)。
  7. 生成最终的SQL语句。

  在生成SQL时,请特别注意以下几点:
  - 使用{{SQL方言}} SQL特有的函数和语法结构 - 考虑该数据库类型的查询优化技巧 
  - 确保生成的SQL语句在语法和逻辑上的正确性
  如果用户的请求不明确或需要额外信息,请提出澄清性问题。
</objective>

● Prompt 构建完成后请求 LLM,生成 SQL

Prompt 构建完成后将 Prompt 发给大模型(LLM)执行,经过大模型(LLM)的推理能力生成 SQL。

file

Text To SQL 的优化手段

上文介绍了 Text To SQL 的一般流程,在这个流程中还可以加入一些优化手段来进一步提高生成 SQL 的准确率,下面分享两个优化技巧。

● Prompt Engineering - 动态少样本

Medprompt 是微软提出的一种极为有效的提示策略,动态少样本则属于 Medprompt 提示策略中的一项技巧。使用动态少样本可以进一步挖掘大模型的能力,提升响应的准确率。

在 Text To SQL 中如何使用动态少样本,首先可以结合自己的业务场景写出一些具有针对性的 SQL 生成问答对,然后将生成的这些问答对写入到向量数据库中,构建 Prompt 时根据用户输入问题进行一次向量检索然后将结果写入到 Prompt 中。

大模型存在不能理解某些领域的专有词汇问题,这个问题也可以通过这种方法解决,对于不能识别的词汇语句可以提前生成 SQL 生成问答对,生成 Prompt 时进行动态匹配,作为上下文发送给 LLM,这样 LLM 就能理解了。

● 模型微调

大模型(LLM)自身已然拥有 Text To SQL 的能力,而且通常模型规模越大,Text To SQL 的能力便越强。不管是大模型还是小模型,均能够通过微调来进一步增强 Text To SQL 的能力。当下,与 Text To SQL 相关的开源数据集众多,例如 WikiSQL、Spider 等等。

目前我们所采用的模型为阿里开源的通义千问 Qwen1.5-14B-Chat ,并运用 Spider 数据集进行了微调,模型微调前后在 Spider 数据集上的评测数据如下:

file

Text To SQL 在数栈中的应用

数栈作为一个大数据开发平台,始终专注于推动技术创新,提升用户体验。为了更进一步提高开发人员的工作效率并简化数据处理流程,数栈开发团队研发了「栈语妙编」智能助手。

「栈语妙编」智能助手能够把用户的自然语言描述转换为 SQL 语句,开发人员只需将待开发的 SQL 任务以自然语言进行描述,「栈语妙编」助手便会生成相应的 SQL ,如此一来,显著提升了开发人员的工作效率,使其能够将更多精力聚焦于数据分析和业务逻辑方面。

file

「栈语妙编」智能助手不仅可以根据自然语言生成 SQL,还可以对已有的 SQL 任务进行智能优化、SQL 纠错、代码补全和添加注释。

file

指标平台在数据驱动决策中扮演着至关重要的角色,为了使指标平台进入到一个新的智能化阶段,我们正在积极结合大模型(LLM)来提升指标平台的易用性、智能化程度和降低使用门槛,Text To SQL就是其中之一。

「袋鼠云指标管理平台」引入 Text To SQL 技术后,用户可以通过日常使用的自然语言来查询复杂的指标数据,并能基于查询结果进行深入分析,而无需掌握专业的 SQL 语法或了解底层数据结构。

file 《行业指标体系白皮书》下载地址:https://www.dtstack.com/resources/1057?src=szsm

《数栈产品白皮书》下载地址:https://www.dtstack.com/resources/1004?src=szsm

《数据治理行业实践白皮书》下载地址:https://www.dtstack.com/resources/1001?src=szsm

想了解或咨询更多有关大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:https://www.dtstack.com/?src=szcsdn

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1925848.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

postman macOS版安装包

链接: https://pan.baidu.com/s/1Y7j4mxB1Otmf3Ku41e7v7w?pwdfy99 提取码: fy99 安装后的效果

【QT】窗口MainWindow

目录 窗口的组成 菜单栏 图形化创建菜单栏 代码创建菜单栏 给菜单设置快捷键 添加子菜单 添加分割线 添加图标 创建menuBar的细节 工具栏 设置工具栏出现的初始位置&#xff08;上下左右&#xff09; 设置工具栏允许停靠的位置 设置不允许浮动 设置不允许移动…

【STM32项目】基于嵌入式智能网控微嵌式远距操控平台(完整工程资料源码)

基于嵌入式智能网控微嵌式远距操控平台 目录&#xff1a; 前言: 一、项目前景调研 1.1 研究背景及意义 1.2 国内外发展现状及趋势 1.2.1 国内现状 1.2.2 国外发展现状 1.2.3 发展趋势 二、什么是嵌入式&#xff1f; 2.1 嵌入式系统概述 2.2 嵌入式系统的组成 2.3 嵌入式操作系统…

camera-qsc-crosstalk校准数据XTALK回写

问题背景 手机越做越紧凑&#xff0c;需要模组和芯片尺寸越做越小&#xff0c;在尺寸一定的基础上&#xff0c;高像素和大像素&#xff0c;对于手机摄像头来说&#xff0c;一直是一对矛盾的存在。 高像素&#xff1a;带来高分辨率画质大像素&#xff1a;带来暗态下高感光度和…

【java】力扣 反转链表

力扣 206 链表反转 题目介绍 解法讲解 先定义两个游标indexnull&#xff0c;prenull&#xff0c;反转之后链表应该是5&#xff0c;4&#xff0c;3&#xff0c;2&#xff0c;1&#xff0c;我们先进行2->1的反转&#xff0c;然后再循坏即可 让定义的游标index去存储head.n…

RocketMQ~消息的种类与生命周期(普通消息、延时定时消息、事务消息)

普通消息 普通消息一般应用于微服务解耦、事件驱动、数据集成等场景&#xff0c;这些场景大多数要求数据传输通道具有可靠传输的能力&#xff0c;且对消息的处理时机、处理顺序没有特别要求。 以在线的电商交易场景为例&#xff0c;上游订单系统将用户下单支付这一业务事件封…

im即时通讯系统有哪些?

IM即时通讯系统是一种通过互联网和移动通信网络实现实时通信的系统。在众多IM即时通讯系统中&#xff0c;WorkPlus作为企业级IM即时通讯系统&#xff0c;提供了全面的通讯和协作解决方案。本文将介绍几种常见的IM即时通讯系统&#xff0c;以及WorkPlus作为企业级IM即时通讯系统…

第三方配件也能适配苹果了,iOS 18与iPadOS 18将支持快速配对

苹果公司以其对用户体验的不懈追求和对创新技术的不断探索而闻名。随着iOS 18和iPadOS 18的发布&#xff0c;苹果再次证明了其在移动操作系统领域的领先地位。 最新系统版本中的一项引人注目的功能&#xff0c;便是对蓝牙和Wi-Fi配件的配对方式进行了重大改进&#xff0c;不仅…

【自动驾驶汽车通讯协议】UART通信详解:理解串行数据传输的基石

文章目录 0. 前言1. 同步通讯与异步通讯1.1 同步通信1.2 异步通信 2. UART的数据格式3. 工作原理3.1 波特率和比特率3.2 UART的关键特性 4. UART在自动驾驶汽车中的典型应用4.1 UART特性4.2应用示例 5. 结语 0. 前言 按照国际惯例&#xff0c;首先声明&#xff1a;本文只是我自…

html5——列表、表格

目录 列表 无序列表 有序列表 自定义列表 表格 基本结构 示例 表格的跨列 表格的跨行 列表 无序列表 <ul>【声明无序列表】 <li>河间驴肉火烧</li>【声明列表项】 <li>唐山棋子烧饼</li> <li>邯郸豆沫</li> <l…

pyinstaller教程(二)-快速使用(打包python程序为exe)

1.介绍 PyInstaller 是一个强大的 Python 打包工具&#xff0c;可以将 Python 程序打包成独立的可执行文件。以下会基于如何在win系统上将python程序打包为exe可执行程序为例&#xff0c;介绍安装方式、快速使用、注意事项以及特别用法。 2.安装方式 通过 pip 安装 PyInstal…

随笔-不是来养老的吗

来了有一个多月了&#xff0c;日子过得飞快。都以为我来养老的&#xff0c;一开始我也这么认为&#xff0c;结果6月份的日均工时&#xff0c;排在了部门第一。一个月做的需求比之前的三个月都多。 来之前&#xff0c;老徐让我多承担点&#xff0c;想着能有多少活嘛&#xff0c…

QT TCP多线程网络通信

学习目标&#xff1a; TCP网络通信编程 学习前置环境 运行环境:qt creator 4.12 QT TCP网络通信编程-CSDN博客 Qt 线程 QThread类详解-CSDN博客 学习内容 使用多线程技术实现服务端计数器 核心代码 客户端 客户端&#xff1a;负责连接服务端&#xff0c;每次连接次数1。…

sklearn之神经网络学习算法

文章目录 什么是神经网络人工神经网络的结构输入层输出层隐含层神经元的链接 近几年深度学习还是比较火的&#xff0c;尤其是在大语言模型之后&#xff0c;在本质上深度学习网络就是层数比较多的神经网络。sklearn并不支持深度学习&#xff0c;但是支持多层感知机&#xff08;浅…

安全测试理论

安全测试理论 什么是安全测试&#xff1f; 安全测试&#xff1a;发现系统安全隐患的过程安全测试与传统测试区别 传统测试&#xff1a;发现bug为目的 安全测试&#xff1a;发现系统安全隐患什么是渗透测试 渗透测试&#xff1a;已成功入侵系统为目标的的攻击过程渗透测试与安全…

自动驾驶事故频发,安全痛点在哪里?

大数据产业创新服务媒体 ——聚焦数据 改变商业 近日&#xff0c;武汉城市留言板上出现了多条关于萝卜快跑的投诉&#xff0c;多名市民反映萝卜快跑出现无故停在马路中间、高架上占最左道低速行驶、转弯卡着不动等情况&#xff0c;导致早晚高峰时段出现拥堵。萝卜快跑是百度 A…

配置与管理Samba服务器(详细教程)

目录 一、基础理论 二、samba工作流程 三、项目实训 3.1目的 3.2准备工作 3.2.1服务器安装samba服务软件包 3.2.2客户端安装软件包 3.3配置Samba服务 3.3.1开启Samba服务&#xff0c;并设置开启自启动 3.3.2创建共享文件夹 3.3.3创建群组 3.3.4修改文件用户权限 3.3.5修改…

LabVIEW人工模拟肺控制系统开发

开发了一种创新的主被动一体式人工模拟肺模型&#xff0c;通过LabVIEW开发的上位机软件&#xff0c;实现了步进电机驱动系统的精确控制和多种呼吸模式的模拟。该系统不仅能够在主动呼吸模式下精确模拟快速呼吸、平静呼吸和深度呼吸&#xff0c;还能在被动模式下通过PID控制实现…

训练CDN基础代码

文章目录 时间整体流程训练细节小结 时间 从开始在平台上搭建到现在可以在平台上训练已经4天了 有GPU平台一般是autoDL平台&#xff0c;白嫖200元平台是&#xff1a;https://cloud.lanyun.net/ 整体流程 1.注册平台&#xff0c;以蓝耘为例子 卡从好变坏依次是&#xff1a;…

C语言:指针详解(5)

目录 一、sizeof()函数和strlen()函数的对比 1.sizeof()函数 2.strlen()函数 3.sizeof()函数和strlen()函数的对比 二、数组和指针笔试试题解析 1.一维数组 2.字符数组 &#xff08;1&#xff09;代码1 &#xff08;2&#xff09;代码2 &#xff08;3&#xff09;代码…