Python酷库之旅-第三方库Pandas(022)

news2024/11/15 7:54:05

目录

一、用法精讲

55、pandas.lreshape函数

55-1、语法

55-2、参数

55-3、功能

55-4、返回值

55-5、说明

55-6、用法

55-6-1、数据准备

55-6-2、代码示例

55-6-3、结果输出

56、pandas.wide_to_long函数

56-1、语法

56-2、参数

56-3、功能

56-4、返回值

56-5、说明

56-6、用法

56-6-1、数据准备

56-6-2、代码示例

56-6-3、结果输出 

57、pandas.isna函数

57-1、语法

57-2、参数

57-3、功能

57-4、返回值

57-5、说明

57-6、用法

57-6-1、数据准备

57-6-2、代码示例

57-6-3、结果输出

二、推荐阅读

1、Python筑基之旅

2、Python函数之旅

3、Python算法之旅

4、Python魔法之旅

5、博客个人主页

一、用法精讲

55、pandas.lreshape函数
55-1、语法
# 55、pandas.lreshape函数
pandas.lreshape(data, groups, dropna=True)
Reshape wide-format data to long. Generalized inverse of DataFrame.pivot.

Accepts a dictionary, groups, in which each key is a new column name and each value is a list of old column names that will be “melted” under the new column name as part of the reshape.

Parameters:
data
DataFrame
The wide-format DataFrame.

groups
dict
{new_name : list_of_columns}.

dropna
bool, default True
Do not include columns whose entries are all NaN.

Returns:
DataFrame
Reshaped DataFrame.
55-2、参数

55-2-1、data(必须)要进行重塑的Pandas数据框。

55-2-2、groups(必须)一个字典,用于指定要重塑的列组,字典的键是新列的名称,值是要重塑的列列表,例如:{'A': ['A1', 'A2'], 'B': ['B1', 'B2']}

55-2-3、dropna(可选,默认值为True)指定是否在重塑过程中丢弃包含NaN的行,如果设置为True,则会丢弃包含NaN的行;如果设置为False,则保留NaN。

55-3、功能

        根据指定的列组对数据框进行重塑,将宽格式的数据转换为长格式。

55-4、返回值

        返回一个重塑后的Pandas数据框,其中包含从宽格式转换为长格式的数据。

55-5、说明

        Pandas.Ireshape是一个强大的工具,可以根据指定的列组对数据框进行宽转长的重塑,它具有三个参数:

55-5-1、data:要重塑的DataFrame。

55-5-2、groups:一个字典,定义新的列组。

55-5-3、dropna:指定是否丢弃包含NaN的行。

        通过理解和正确使用这些参数,可以灵活地重塑数据框,从而更好地组织和分析数据

55-6、用法
55-6-1、数据准备
55-6-2、代码示例
# 55、pandas.lreshape函数
import pandas as pd
# 创建示例数据框
data = pd.DataFrame({
    'A1': [1, 2, 3],
    'A2': [4, 5, 6],
    'B1': ['a', 'b', 'c'],
    'B2': ['d', 'e', 'f']
})
# 定义列组
groups = {
    'A': ['A1', 'A2'],
    'B': ['B1', 'B2']
}
# 使用pandas.lreshape进行重塑
reshaped = pd.lreshape(data, groups)
print(reshaped)
55-6-3、结果输出
# 55、pandas.lreshape函数
#    A  B
# 0  1  a
# 1  2  b
# 2  3  c
# 3  4  d
# 4  5  e
# 5  6  f
56、pandas.wide_to_long函数
56-1、语法
# 56、pandas.wide_to_long函数
pandas.wide_to_long(df, stubnames, i, j, sep='', suffix='\\d+')
Unpivot a DataFrame from wide to long format.

Less flexible but more user-friendly than melt.

With stubnames [‘A’, ‘B’], this function expects to find one or more group of columns with format A-suffix1, A-suffix2,…, B-suffix1, B-suffix2,… You specify what you want to call this suffix in the resulting long format with j (for example j=’year’)

Each row of these wide variables are assumed to be uniquely identified by i (can be a single column name or a list of column names)

All remaining variables in the data frame are left intact.

Parameters:
df
DataFrame
The wide-format DataFrame.

stubnames
str or list-like
The stub name(s). The wide format variables are assumed to start with the stub names.

i
str or list-like
Column(s) to use as id variable(s).

j
str
The name of the sub-observation variable. What you wish to name your suffix in the long format.

sep
str, default “”
A character indicating the separation of the variable names in the wide format, to be stripped from the names in the long format. For example, if your column names are A-suffix1, A-suffix2, you can strip the hyphen by specifying sep=’-’.

suffix
str, default ‘\d+’
A regular expression capturing the wanted suffixes. ‘\d+’ captures numeric suffixes. Suffixes with no numbers could be specified with the negated character class ‘\D+’. You can also further disambiguate suffixes, for example, if your wide variables are of the form A-one, B-two,.., and you have an unrelated column A-rating, you can ignore the last one by specifying suffix=’(!?one|two)’. When all suffixes are numeric, they are cast to int64/float64.

Returns:
DataFrame
A DataFrame that contains each stub name as a variable, with new index (i, j).
56-2、参数

56-2-1、df(必须)要进行重塑的Pandas数据框。

56-2-2、stubnames(必须)列名前缀的列表,这些列将被转换为长格式。比如,如果列名是A1970A1980B1970B1980,那么stubnames应该是['A', 'B']

56-2-3、i(必须)表示唯一标识每一行的列名或列名列表,重塑后的每一行将保留这些列。

56-2-4、j(必须)新列的名称,这列将包含从宽格式中提取的时间或编号信息。例如,'year'可以作为j

56-2-5、sep(可选,默认值为'')列名中stubnames和j部分之间的分隔符。例如,如果列名是A-1970,那么sep应该是'-'

56-2-6、suffix(可选,默认值为'\\d+')stubnames后缀的正则表达式模式,用于匹配列名中的时间或编号部分,默认情况下,匹配一个或多个数字。

56-3、功能

        用于将数据从宽格式(wide format)转换为长格式(long format),这个函数特别适用于处理时间序列数据或面板数据。

56-4、返回值

        返回一个重塑后的Pandas数据框,其中包含从宽格式转换为长格式的数据。

56-5、说明

        Pandas.wide_to_long是一个强大的工具,可以通过指定列名前缀、标识列、时间或编号列来将宽格式的数据转换为长格式。它具有以下参数:

56-5-1、df:要重塑的DataFrame。

56-5-2、stubnames:列名前缀列表。

56-5-3、i:唯一标识每一行的列名或列名列表。

56-5-4、j:新列的名称,用于包含时间或编号信息。

56-5-5、sep:列名中前缀和时间/编号部分之间的分隔符。

56-5-6、suffix:匹配时间或编号部分的正则表达式模式。

        理解并正确使用这些参数,可以灵活地重塑数据框,以便更好地进行数据分析和处理。

56-6、用法
56-6-1、数据准备
56-6-2、代码示例
# 56、pandas.wide_to_long函数
import pandas as pd
# 创建示例数据框
df = pd.DataFrame({
    'id': [1, 2, 3],
    'A1970': [2.5, 1.5, 3.0],
    'A1980': [2.0, 1.0, 3.5],
    'B1970': [3.0, 2.0, 4.0],
    'B1980': [3.5, 2.5, 4.5]
})
# 使用pandas.wide_to_long进行重塑
df_long = pd.wide_to_long(df, stubnames=['A', 'B'], i='id', j='year', sep='', suffix='\\d+')
print(df_long)
56-6-3、结果输出 
# 56、pandas.wide_to_long函数
#            A    B
# id year          
# 1  1970  2.5  3.0
# 2  1970  1.5  2.0
# 3  1970  3.0  4.0
# 1  1980  2.0  3.5
# 2  1980  1.0  2.5
# 3  1980  3.5  4.5
57、pandas.isna函数
57-1、语法
# 57、pandas.isna函数
pandas.isna(obj)
Detect missing values for an array-like object.

This function takes a scalar or array-like object and indicates whether values are missing (NaN in numeric arrays, None or NaN in object arrays, NaT in datetimelike).

Parameters:
obj
scalar or array-like
Object to check for null or missing values.

Returns:
bool or array-like of bool
For scalar input, returns a scalar boolean. For array input, returns an array of boolean indicating whether each corresponding element is missing.
57-2、参数

57-2-1、obj(必须)要检查缺失值的对象,可以是单个标量值、数组、Series、DataFrame或其他类似的pandas对象。

57-3、功能

        用于检测缺失值,NA值在Pandas中表示缺失或无效的数据。

57-4、返回值

        返回一个布尔型对象,与输入obj具有相同的形状,布尔型对象中的True表示对应位置的值为缺失值,False表示不是缺失值。

57-5、说明

        pandas.isna(obj)是一个非常实用的函数,用于检测任何pandas对象中的缺失值,它适用于单个值、数组、Series和DataFrame等多种类型的数据结构,返回的布尔型对象可以用于进一步的数据清洗和处理操作

57-6、用法
57-6-1、数据准备
57-6-2、代码示例
# 57、pandas.isna函数
# 57-1、检查单个标量值
import pandas as pd
import numpy as np
print(pd.isna(np.nan))
print(pd.isna(3.14))
print(pd.isna(None), end='\n\n')

# 57-2、检查Series
import pandas as pd
# 创建一个Series
s = pd.Series([1, 2, np.nan, 4, None])
# 检查Series中的缺失值
print(pd.isna(s), end='\n\n')

# 57-3、检查DataFrame
import pandas as pd
# 创建一个DataFrame
df = pd.DataFrame({
    'A': [1, 2, np.nan],
    'B': [np.nan, 4, 5],
    'C': [1, np.nan, np.nan]
})
# 检查DataFrame中的缺失值
print(pd.isna(df))
57-6-3、结果输出
# 57、pandas.isna函数
# 57-1、检查单个标量值
# True
# False
# True

# 57-2、检查Series
# 0    False
# 1    False
# 2     True
# 3    False
# 4     True
# dtype: bool

# 57-3、检查DataFrame
#       A      B      C
# 0  False   True  False
# 1  False  False   True
# 2   True  False   True

二、推荐阅读

1、Python筑基之旅
2、Python函数之旅
3、Python算法之旅
4、Python魔法之旅
5、博客个人主页

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1925037.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux文件压缩与解压缩

在Linux中,tar实用程序是用于创建、管理和提取存档的常用命令。 tar实用程序的常用选项 执行tar操作需要以下tar命令操作之一: -c ,--create :创建存档文件(即压缩文件)。-t,--list&#xff1…

0708,LINUX目录相关操作 + LINUX全导图

主要是冷气太足感冒了,加上少吃药抗药性差,全天昏迷,学傻了学傻了 01:简介 02: VIM编辑器 04:目录 05:文件 03:常用命令 06:进程 07:进程间的通信 cat t_c…

数据结构(4.1)——串的存储结构

串的顺序存储 串(String)的顺序存储是指使用一段连续的存储单元来存储字符串中的字符。 计算串的长度 静态存储(定长顺序存储) #define MAXLEN 255//预定义最大串为255typedef struct {char ch[MAXLEN];//每个分量存储一个字符int length;//串的实际长…

接口安全配置

问题点: 有员工在工位在某个接口下链接一个集线器,从而扩展上网接口,这种行为在某些公司是被禁止的,那么网络管理员如何控制呢?可以配置接口安全来限制链接的数量,切被加入安全的mac地址不会老化&#xff…

开源模型应用落地-工具使用篇-Spring AI-Function Call(八)

​​​​​​​一、前言 通过“开源模型应用落地-工具使用篇-Spring AI(七)-CSDN博客”文章的学习,已经掌握了如何通过Spring AI集成OpenAI和Ollama系列的模型,现在将通过进一步的学习,让Spring AI集成大语言模型更高阶…

Linux的世界 -- 初次接触和一些常见的基本指令

一、Linux的介绍和准备 1、简单介绍下Linux的发展史 1991年10月5日,赫尔辛基大学的一名研究生Linus Benedict Torvalds在一个Usenet新闻组(comp.os.minix)中宣布他编制出了一种类似UNIX的小操作系统,叫Linux。新的操作系统是受到另一个UNIX的…

【Python】爬虫实战01:获取豆瓣Top250电影信息

本文中我们将通过一个小练习的方式利用urllib和bs4来实操获取豆瓣 Top250 的电影信息,但在实际动手之前,我们需要先了解一些关于Http 请求和响应以及请求头作用的一些知识。 1. Http 请求与响应 HTTP(超文本传输协议)是互联网上…

C#创建windows服务程序

步骤 1: 创建Windows服务项目 打开Visual Studio。选择“创建新项目”。在项目类型中搜索“Windows Service”并选择一个C#模板(如“Windows Service (.NET Framework)”),点击下一步。输入项目名称、位置和其他选项,然后点击“创…

C++ | Leetcode C++题解之第232题用栈实现队列

题目&#xff1a; 题解&#xff1a; class MyQueue { private:stack<int> inStack, outStack;void in2out() {while (!inStack.empty()) {outStack.push(inStack.top());inStack.pop();}}public:MyQueue() {}void push(int x) {inStack.push(x);}int pop() {if (outStac…

秋招突击——7/9——MySQL索引的使用

文章目录 引言正文B站网课索引基础创建索引如何在一个表中查看索引为字符串建立索引全文索引复合索引复合索引中的排序问题索引失效的情况使用索引进行排序覆盖索引维护索引 数据库基础——文档资料学习整理创建索引删除索引创建唯一索引索引提示复合索引聚集索引索引基数字符串…

网络安全——防御课实验二

在实验一的基础上&#xff0c;完成7-11题 拓扑图 7、办公区设备可以通过电信链路和移动链路上网(多对多的NAT&#xff0c;并且需要保留一个公网IP不能用来转换) 首先&#xff0c;按照之前的操作&#xff0c;创建新的安全区&#xff08;电信和移动&#xff09;分别表示两个外网…

基础小波降噪方法(Python)

主要内容包括&#xff1a; Stationary wavelet Transform (translation invariant) Haar wavelet Hard thresholding of detail coefficients Universal threshold High-pass filtering by zero-ing approximation coefficients from a 5-level decomposition of a 16Khz …

win10系统更新后无法休眠待机或者唤醒,解决方法如下

是否使用鼠标唤醒 是否使用鼠标唤醒 是否使用键盘唤醒

【Java开发实训】day03——方法的注意事项

目录 一、方法的基本概念 二、void和return关键字 三、单一返回点原则 四、static方法使用说明 &#x1f308;嗨&#xff01;我是Filotimo__&#x1f308;。很高兴与大家相识&#xff0c;希望我的博客能对你有所帮助。 &#x1f4a1;本文由Filotimo__✍️原创&#xff0c;首发于…

《Windows API每日一练》9.25 系统菜单

/*------------------------------------------------------------------------ 060 WIN32 API 每日一练 第60个例子POORMENU.C&#xff1a;使用系统菜单 GetSystemMenu函数 AppendMenu函数 (c) www.bcdaren.com 编程达人 -------------------------------------------…

Java02--基础概念

一、注释 注释是在程序指定位置添加的说明性信息 简单理解&#xff0c;就是对代码的一种解释 1.单行注释 格式: //注释信息 2.多行注释 格式: /*注释信息*/ 3.文档注释 格式: /**注释信息*/ 注释使用的细节: 注释内容不会参与编译和运…

九盾安防丨如何判断叉车是否超速?

在现代物流和生产流程中&#xff0c;叉车是提高效率和降低成本的关键工具。然而&#xff0c;叉车的高速行驶也带来了安全隐患&#xff0c;这就要求我们对其进行严格的安全管理。九盾安防&#xff0c;作为业界领先的安防专家&#xff0c;今天就为大家揭晓如何判断叉车是否超速&a…

OpenCV距离变换函数distanceTransform的使用

操作系统&#xff1a;ubuntu22.04OpenCV版本&#xff1a;OpenCV4.9IDE:Visual Studio Code编程语言&#xff1a;C11 功能描述 distanceTransform是OpenCV库中的一个非常有用的函数&#xff0c;主要用于计算图像中每个像素到最近的背景&#xff08;通常是非零像素到零像素&…

VMware_centos8安装

目录 VMware Workstation Pro的安装 安装centos VMware Workstation Pro的安装 正版VMware 17百度网盘下载链接 (含秘钥) 链接&#xff1a;https://pan.baidu.com/s/16zB-7IAACM_1hwR1nsk12g?pwd1111 提取码&#xff1a;1111 第一次运行会要求输入秘钥 秘钥在上边的百度网盘…

【Leetcode】最小数字游戏

你有一个下标从 0 开始、长度为 偶数 的整数数组 nums &#xff0c;同时还有一个空数组 arr 。Alice 和 Bob 决定玩一个游戏&#xff0c;游戏中每一轮 Alice 和 Bob 都会各自执行一次操作。游戏规则如下&#xff1a; 每一轮&#xff0c;Alice 先从 nums 中移除一个 最小 元素&…