【图解大数据技术】流式计算:Spark Streaming、Flink

news2024/11/15 11:59:29

【图解大数据技术】流式计算:Spark Streaming、Flink

  • 批处理 VS 流式计算
  • Spark Streaming
  • Flink
    • Flink简介
      • Flink入门案例
      • Streaming Dataflow
    • Flink架构
      • Flink任务调度与执行
      • task slot 和 task
    • EventTime、Windows、Watermarks
      • EventTime
      • Windows
      • Watermarks

批处理 VS 流式计算

计算存储介质上的大规模数据,这类计算叫大数据批处理计算。数据是以批为单位进行计算,比如一天的访问日志、历史上所有的订单数据等。这些数据通常通过 HDFS 存储在磁盘上,使用 MapReduce 或者 Spark 这样的批处理大数据计算框架进行计算,一般完成一次计算需要花费几分钟到几小时的时间。

在这里插入图片描述

还有一种是针对实时产生的大规模数据进行即时计算处理,比如摄像头采集的实时视频数据、淘宝实时产生的订单数据等。实时处理最大的不同就是这类数据,是实时传输过来的针对这类大数据的实时处理系统也叫大数据流计算系统。

在这里插入图片描述

Spark Streaming

在这里插入图片描述

Spark是一个批处理大数据计算引擎,而 Spark Steaming 则利用了 Spark 的分片和快速计算的特性,把实时传输过来的数据按时间范围进行分段,转成一个个的小批,再交给 Spark 去处理。因此 Spark Streaming 的原理是流转批,Spark Streaming 不是真正意义上的实时计算框架,它是一个准实时的计算框架。

Flink

Flink简介

Flink 和 Spark Streaming 不一样,Flink 一开始设计就是为了做实时流式计算的。它可以监听消息队列获取数据流,也可以用于计算存储在 HDFS 等存储系统上的数据(Flink 把 这些静态数据当做数据流来进行处理)。

在这里插入图片描述

然后 Flink 计算后生成的结果流,也可以发送到其他存储系统。

在这里插入图片描述

Flink入门案例

    public static void main(String[] args) throws Exception {
    	// 初始化一个流执行环境
        final StreamExecutionEnvironment env =
                StreamExecutionEnvironment.getExecutionEnvironment();
		
		// 利用这个执行环境构建数据流 DataStream(source操作)
        DataStream<Person> flintstones = env.fromElements(
                new Person("Fred", 35),
                new Person("Wilma", 35),
                new Person("Pebbles", 2));

		// 执行各种数据转换操作(transformation)
        DataStream<Person> adults = flintstones.filter(new FilterFunction<Person>() {
            @Override
            public boolean filter(Person person) throws Exception {
                return person.age >= 18;
            }
        });

		// 打印结果(sink类型操作)
        adults.print();

		// 执行
        env.execute();
    }

在这里插入图片描述

首先构建一个执行环境env,然后通过执行环境env构建数据流DataStream(这就是source操作),然对这个数据流进行各种转换操作(transformation),最后跟上一个sink类型操作(类似是Spark的action操作),然后调用env的execute()启动计算。

上面是流计算的例子,如果要进行批计算,则要构建ExecutionEnvironment类型的执行环境,然后使用ExecutionEnvironment执行环境构建一个DataSet。

在这里插入图片描述

Streaming Dataflow

Flink程序代码会被映射为Streaming Dataflow(类似于DAG)。一个Streaming Dataflow是由一组Stream(流)和Operator(算子)组成,并且始于一个或多个Source Operator,结束于一个或多个Sink Operator,中间有一个或多个Transformation Operator。

Source Operator:

        DataStream<Person> flintstones = env.fromElements(
                new Person("Fred", 35),
                new Person("Wilma", 35),
                new Person("Pebbles", 2));

Transformation Operator:

        DataStream<Person> adults = flintstones.filter(new FilterFunction<Person>() {
            @Override
            public boolean filter(Person person) throws Exception {
                return person.age >= 18;
            }
        });

Sink Operator:

	adults.print();

在这里插入图片描述

由于Flink是分布式并行的,因此在程序执行期间,一个Stream流会有多个Stream Partition(流分区),一个Operator也会有多个Operator Subtask(算子子任务)。

在这里插入图片描述

两个 operator 之间传递的时候有两种模式:

  • One to One 模式:像Source到map这种传递模式,不会改变数据的分区特性。
  • Redistributing (重新分配)模式:像map到keyBy这种传递模式,会根据key的hashcode进行重写分区,改变分区特性的。

Flink还会进行优化,将紧密度高的算子结合成一个Operator Chain(算子链)。

在这里插入图片描述

比如Source操作和map操作可以结合成一个Operator Chain,结合成Operator Chain后就在一个task中由一个thread完成。

Flink架构

Flink任务调度与执行

在这里插入图片描述

  1. 我们的代码会被Flink解析成一个DAG图,当我们调用env.execute()方法后,该DAG图就会被打包通过Akka客户端发送到JobManager。
  2. JobManager会通过调度器,把task调度到TaskManager上执行。
  3. TaskManager接收到task后,task将会在一个task slot中执行。

task slot 和 task

我们看到在TaskManager上有一个个的task slot被划分出来,task slot的数量是在TaskManager创建之初就设置好的。每个task(正确来说应该是subtask)都会调度到一个task slot上执行。task slot的作用主要是进行内存隔离,比如TaskManager设置了3个task slot的数量,那么每个task slot占用TaskManager三分之一的内存,task在task slot执行时,task与task之间将不会有内存资源竞争的情况发生。

在这里插入图片描述

EventTime、Windows、Watermarks

由于Flink处理的是流式计算,数据是以流的形式源源不断的流过来的,也就是说数据是没有边界的,但是对数据的计算必须在一个范围内进行,比如实时统计高速公路过去一个小时里的车流量。

在这里插入图片描述

那么就需要给源源不断流过来的数据划分边界,我们可以根据时间段或数据量来划分边界。

如果要按照时间段来划分边界,那么是通过时间字段进行划分。

EventTime

在这里插入图片描述

Flink有三种类型的时间:

  • Event Time
  • Ingestion Time
  • Processing Time

一般用的较多的时Event Time,因为Event Time是固定不变的,不管什么时候计算,都会得到相同的输出结果。

Windows

有了时间字段后,就可以根据时间划分时间窗,比如下面就是划分1分钟为一个时间窗,然后就可以对时间窗内的数据做计算。

.window(TumblingEventTimeWindows.of(Time.minutes(1)))

TumblingEventTimeWindows是滚动时间窗:

在这里插入图片描述

还有SlidingEventTimeWindows滑动时间窗:

// 没10秒计算前1分钟窗口内的数据
.window(SlidingEventTimeWindows.of(Time.minutes(1), Time.seconds(10)))

在这里插入图片描述

以及EventTimeSessionWindows会话时间窗:

// 间隔超过5s的话,下一达到的事件在新的窗口内计算,否则在同一窗口内计算
.window(EventTimeSessionWindows.withGap(Time.seconds(5)))

上面设置的会话时间窗表示如果两个事件间的间隔超过5秒,那么后一个事件就会在新的窗口中计算;如果两个事件间隔没有超过5秒,那么就在同一窗口内计算。

在这里插入图片描述

Watermarks

但是事件流并不一定是有序的,它有可能是无序,有可能早发生的事件反而比晚发生的事件更晚到达。这时Flink需要等待较早发生的事件都到达了,才能进行一个时间窗的计算。

但是Flink无法得知什么时候边界内的所有事件都达到,因此必须有一种机制控制Flink什么时候停止等待。

这时候就要使用watermarks ,Flink接收到每一条数据时,会使用watermark生成器根据EventTime计算出一个watermark然后插入到数据中。当我们设置watermark的延迟时长是t时,那么watermark就等于当前所有达到数据中的EventTime中的最大值(maxEventTime)减去时间t,代表EventTime在 maxEventTime - t 之前的数据都已达到,结束时间为 maxEventTime - t 的时间窗可以进行计算。

在这里插入图片描述

比如上面的例子,我们设置wartemark的延时时间t为2,那么当EventTime为7的事件到达时,该事件的watermark就是5(maxEventTime = 7, t = 2, watermark = maxEventTime - t = 7 - 2 = 5),那么表示Flink认定EventTime在5或5之前的时间都已经达到了,那么如果有一个窗口的结束时间为5的话,该窗口就会触发计算。

watermarks的使用:

DataStream<Event> stream = ...;

WatermarkStrategy<Event> strategy = WatermarkStrategy
        .<Event>forBoundedOutOfOrderness(Duration.ofSeconds(20))
        .withTimestampAssigner((event, timestamp) -> event.timestamp);

DataStream<Event> withTimestampsAndWatermarks =
    stream.assignTimestampsAndWatermarks(strategy);

当然,使用了watermarks之后,也不一定就能保证百分之一百准确。当我们把延时时间t设置的较短时,就能获取更低的延迟,但是准确性也相对下降;而如果我们把t设的较大,那么延迟就更大,但是准确性就想对较高。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1924725.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Lottery 分布式抽奖(个人向记录总结)

1.搭建&#xff08;DDDRPC&#xff09;架构 DDD——微服务架构&#xff08;微服务是对系统拆分的方式&#xff09; &#xff08;Domain-Driven Design 领域驱动设计&#xff09; DDD与MVC同属微服务架构 是由Eric Evans最先提出&#xff0c;目的是对软件所涉及到的领域进行建…

jenkins系列-05-jenkins构建golang程序

下载go1.20.2.linux-arm64.tar.gz 并存放到jenkins home目录&#xff1a; 写一个golang demo程序&#xff1a;静态文件服务器&#xff1a;https://gitee.com/jelex/jenkins_golang package mainimport ("encoding/base64""flag""fmt""lo…

搜索引擎中的相关性模型

一、什么是相关性模型&#xff1f; 相关性模型主要关注的是query和doc的相关性。例如给定query&#xff0c;和1000个doc&#xff0c;找到哪个doc是好query最相关的。 二、为什么需要相关性模型&#xff1f; 熟悉es的应该都熟悉BM25相关性算法。它是一个很简单的相关性算法。我…

【Linux】权限管理与相关指令

文章目录 1.权限、文件权限、用户文件权限的理解以及对应八进制数值表示、设置目录为粘滞位文件类型 2.权限相关的常用指令susudochmodchownchgrpumaskwhoamifile 1.权限、文件权限、用户 通过一定条件&#xff0c;拦住一部分人&#xff0c;给另一部分权利来访问资源&#xff0…

【node-RED 4.0.2】连接 Oracle 数据库踩坑解决,使用模组:node-red-contrib-agur-connector

关于 Oracle Oracle 就好像一张吸满水的面巾纸&#xff0c;你稍一用力它就烂了。 一、发现的问题 1.为什么需要 Oracle Instant Client && 不能使用 rpm 安装的原因 我们在使用 node-red 的 node-red-contrib-agur-connector 插件模组时&#xff0c;需要用到 Oracl…

QML界面控件加载与显示顺序

一、QML界面控件加载顺序 QML在界面加载时的顺序和我们认知的有很大的不同&#xff0c;有时候会对我们获取参数以及界面实现造成很大的困扰 1、加载顺序 import QtQuick 2.12 import QtQml 2.12 import QtQuick.Window 2.12 import QtQuick.VirtualKeyboard 2.4Window {id: …

Oracle使用fetch first子句报错:ORA-00933 SQL命令未正确结束

问题背景 今天在统计终端厂商告警次数Top10的时候使用SQL查询使用到了fetch first子句&#xff0c;结果执行报错&#xff1a;ORA-00933 SQL命令未正确结束。 报错原因 Oracle数据库中&#xff0c;使用 FETCH FIRST 子句需要启用 Oracle 12c 及以上版本。如果在较低版本的 Or…

德迅与DSV携香港蝴蝶效应集团,创半导体与新能源汽车物流新篇章

在全球经济一体化的大背景下,物流行业作为连接生产与消费的重要纽带,正迎来前所未有的发展机遇。特别是在半导体产业和新能源汽车领域,物流服务的专业性和高效性已成为企业竞争力的重要体现。近日,国际物流巨头德迅(Kuehne Nagel International)与全球汽车行业供应链物流专家D…

GitHub+Picgo图片上传

Picgo下载&#xff0c;修改安装路径&#xff0c;其他一路下一步&#xff01; 地址 注册GitHub&#xff0c;注册过程不详细展开&#xff0c;不会的百度一下 地址 新建GitHub仓库存放图片 生成Token令牌 点击头像&#xff0c;点击Settings 滑到最后 过期时间&#xff1a;No expi…

用HTML和CSS实现提示工具(tooltip)及HTML元素的定位

所谓提示工具&#xff0c;是指将鼠标移动到某个HTML元素&#xff08;工具&#xff09;时会显示一些提示内容&#xff08;提示文本&#xff09;&#xff0c;而鼠标移出工具元素的范围时提示文本就消失了。考虑到提示文本元素应当在鼠标进入工具元素时显示&#xff0c;鼠标离开工…

网络安全防御【防火墙NAT智能选举综合实验】

目录 一、实验拓扑图 二、实验要求 三、实验思路 四、实验步骤 1、FW2的网络相关配置&#xff1a; 2、路由器需要增加的&#xff08;接口&#xff09;命令配置 3、新增加的PC、client、sever的IP地址配置&#xff1a; 4、多对多的NAT&#xff0c;并且需要保留一个公网I…

LeetCode 3011.判断一个数组是否可以变为有序

注&#xff1a;这个题目有序的意思是“升序” 解法一&#xff1a;bubblesort O(nlogn) 核心思想&#xff1a;冒泡每次会将一个数归位到最后的位置上&#xff0c;所以我们如果碰到无法向右交换的数字&#xff0c;即可return false class Solution { public:// 返回一个十进制…

链接追踪系列-05.mac m1 安装es+kibana

运行启动脚本&#xff1a; docker run -e ES_JAVA_OPTS"-Xms512m -Xmx512m" -d -p 9200:9200 -p 9300:9300 -e "discovery.typesingle-node" \-v /Users/jelex/dockerV/es/config/elasticsearch.yml:/usr/share/elasticsearch/config/elasticsearch.yml …

初涉项目架构

初涉项目架构 了解传统项目与互联网项目的区别 传统项目指OA、HR、CRM这种&#xff0c;互联网项目则是常见的app 首先是受众&#xff08;服务对象&#xff09;不同&#xff0c;传统项目是面向公司、学校等群体&#xff0c;互联网项目则是面向全体网民 两种对象数量不同&#x…

使用Java连接星火认知大模型:一个实际案例解析

引言&#xff1a; 随着人工智能技术的快速发展&#xff0c;认知大模型如星火在自然语言处理、语音识别等领域发挥着越来越重要的作用。本文将通过一个实际的Java代码示例&#xff0c;详细讲解如何使用Java连接星火认知大模型&#xff0c;并处理其响应。 1.导入依赖&#xff1…

Github 2024-07-13 开源项目日报 Top10

根据Github Trendings的统计,今日(2024-07-13统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目3TypeScript项目2Go项目2Java项目2Rust项目1非开发语言项目1Solidity项目1从零开始构建你喜爱的技术 创建周期:2156 天Star数量:25…

如何在 Android Studio 中导出并在 IntelliJ IDEA 中查看应用的 SQLite 数据库

在 Android 应用开发过程中&#xff0c;调试和查看应用内的数据库内容是常见的需求。本文将介绍如何使用 Android Studio 导出应用的 SQLite 数据库&#xff0c;并在 IntelliJ IDEA 中查看该数据库。 步骤一&#xff1a;在设备上运行您的应用 首先&#xff0c;确保您的应用已…

T113-i系统启动速度优化方案

背景: 硬件:T113-i + emmc 软件:uboot2018 + linux5.4 + QT应用 分支:longan 问题: 全志T113-i的官方系统软件编译出的固件,开机启动时间10多秒,启动时间太长,远远超过行业内linux系统的开机速度,需要进一步优化。 T113-i 优化后启动速度实测数据 启动阶段启动时间(…

本地部署 EVE: Unveiling Encoder-Free Vision-Language Models

本地部署 EVE: Unveiling Encoder-Free Vision-Language Models 0. 引言1. 快速开始2. 运行 Demo 0. 引言 EVE (Encoder-free Vision-language model) 是一种创新的多模态 AI 模型&#xff0c;主要特点是去除了传统视觉语言模型中的视觉编码器。 核心创新 架构创新&#xff…

装饰模式(大话设计模式)C/C++版本

装饰模式 需求分析&#xff1a; 1. 选择服饰 > 服饰类 2. 输出结果 对象是人 > 人类将Person类中一大堆服饰功能抽象出服饰类&#xff0c;然后通过Person类聚合服饰属性&#xff0c;通过Set行为来设置服饰属性&#xff0c;最后达到灵活打扮的效果 装饰模式 动态地给一个…