经典关系抽取(一)CasRel(层叠式指针标注)在DuIE2.0数据集上的应用
- 关系抽取(Relation Extraction)就是从一段文本中抽取出(主体,关系,客体)这样的三元组,用英文表示是 (subject, relation, object) 。
- 从关系抽取的定义可以看出,关系抽取主要要做两件事:
- 识别文本中的subject和object(实体识别)
- 判断这两个实体属于哪种关系(关系分类)
- 在解决关系抽取这个任务时,按照模型的结构分为两种,一种是 Pipeline,另一种是 Joint Model。
- 如果将关系抽取的两个任务分离,先进行实体识别,再进行关系分类,就是 Pipeline 模型。一般认为Pipeline会出现误差传播的情况,也就是
实体识别的误差,会影响后面的关系分类任务,但关系分类任务,又无法对实体识别造成的误差进行修正
。因为两个任务是独立的,关系分类的loss,无法反向传播给实体识别阶段。 - 为了优化 Pipeline 存在的问题,就有了 Joint Model(多任务学习的联合抽取模型),本质上还是 Pipeline 的编码方式,也就是先解码出实体,再去解码关系。但跟 Pipeline 不同的是,Joint Model 只计算一次损失,所以loss反向传播,也会对实体识别的误差进行修正。
- 如果将关系抽取的两个任务分离,先进行实体识别,再进行关系分类,就是 Pipeline 模型。一般认为Pipeline会出现误差传播的情况,也就是
- 今天,我们介绍一种利用层叠式指针标注(CasRel、大神苏剑林二作)进行关系抽取的模型。
- 论文链接:https://arxiv.org/abs/1909.03227
- 论文代码:https://github.com/weizhepei/CasRel(keras实现)
- 苏神博客介绍:https://kexue.fm/archives/7161
1 实体关系的joint抽取模型简介
- 我们已经知道pipeline方式主要存在下面几个问题:
- pipeline方式存在误差积累,还会增加计算复杂度(实体冗余计算)
- pipeline方式存在交互缺失,忽略实体和关系两个任务之间的内在联系
- 因此现在关系抽取大都采取joint方式,实体关系的joint抽取模型可分为下面2大类。
1.1 多任务学习
多任务学习(共享参数的联合抽取模型)
。多任务学习机制中,实体和关系共享同一个网络编码,但本质上仍然是采取pipeline的解码方式(故仍然存在误差传播问题)。近年来的大部分joint都采取这种共享参数的模式,集中在魔改各种Tag框架和解码方式。下面是几种典型网络结构:
-
多头选择。构建的关系分类器对每一个实体pair进行关系预测(N为序列长度,C为关系类别总数),输入的实体pair其实是每一个抽取实体的最后一个token。
-
论文地址:Joint entity recognition and relation extraction as a multi-head selection problem
-
模型架构:
-
-
层叠式指针标注。将关系看作是SPO(Subject-Prediction-Object)抽取,先抽取主体Subject,然后对主体感知编码,最后通过层叠式的指针网络抽取关系及其对应的Object。
- 论文地址:A Novel Cascade Binary Tagging Framework for Relational Triple Extraction
- 模型架构:
-
Span-level NER。通过片段(span)排列抽取实体,然后提取实体对进行关系分类。
- 论文地址:Span-based Joint Entity and Relation Extraction with Transformer Pre-training(1909)
- 模型架构:
1.2 结构化预测
结构化预测(联合解码的联合抽取模型)
- 结构化预测则是一个全局优化问题,在推断的时候能够联合解码实体和关系(而不是像多任务学习那样,先抽取实体、再进行关系分类)。
- 结构化预测的joint模型也有很多,比如:
- 统一的序列标注框架。Joint extraction of entities and relations based on a novel tagging scheme
- 多轮QA+强化学习。Entity-Relation Extraction as Multi-Turn Question Answering
2 层叠式指针标注CasRel简介
2.1 背景介绍
-
以往的方法大多将关系建模为实体対上的一个离散的标签:
- 首先通过命名实体识别(NER)确定出句子中所有的实体
- 然后学习一个关系分类器在所有的实体对上做RC,最终得到我们所需的关系三元组
-
但是这样会出现下面的问题:
- 类别分布不平衡。多数提取出来的实体对之间无关系
- 同一实体参与多个有效关系(如下图的重叠三元组),分类器可能会混淆。如果没有足够的训练样例,分类器难以区分(有的多标签分类难以工作就是因为这个)。
-
CasRel框架最核心思想:把关系(Relation)建模为将头实体(Subject)映射到尾实体(Object)的函数,而不是将其视为实体对上的标签。
我们不学习关系分类器: f ( s u b j e c t , o b j e c t ) − > r 而是学习关系特定的尾实体 ( o b j e c t ) 标注器 : f r ( s u b j e c t ) − > o b j e c t 我们不学习关系分类器:f(subject,object)->r\\ 而是学习关系特定的尾实体(object)标注器:f_r(subject)->object 我们不学习关系分类器:f(subject,object)−>r而是学习关系特定的尾实体(object)标注器:fr(subject)−>object
-
每个尾实体标注器都将在
给定关系和头实体的条件下
识别出所有可能的尾实体
。 -
CASREL的做法:
- 编码器:Bert
- 序列标注:抽出头实体
- 关系特定的尾实体标注:对每一个头实体,针对其可能的关系抽取其尾实体,如果不存在尾实体,就无此关系。
2.2 CasRel的网络结构
-
关系三元组抽取问题被分解为如下的两步过程:
- 首先,我们确定出句子中所有可能的头实体;
- 在下图中,我们识别到三个头实体分别为:[Jackie R. Brown]、[Washington]、[United States Of America]
- 然后针对每个头实体,我们使用
关系特定的标注器
来同时识别出所有可能的关系和对应的尾实体。- 在下图中,头实体[Jackie R. Brown]在特定关系[Birth_place]中识别到了2个尾实体[Washington]和[United States Of America],那么三元组为:(Jackie R. Brown, Birth_place, Washington)、(Jackie R. Brown, Birth_place, United States Of America)
- 头实体[Washington]在特定关系[Capital_of]中识别到了1个尾实体[United States Of America],那么三元组为:(Washington, Capital_of, United States Of America)
- 头实体[United States Of America]在所有的关系中都没有识别尾实体,因此没有三元组。
- 首先,我们确定出句子中所有可能的头实体;
-
如下图所示,CASREL模型由三个模块构成:
-
BERT编码层模块(BERT Encoder)。
- 这个是固定操作,就是将token经过Bert后转换为词向量。
-
主体标记模块(Subject Tagger)。
- 采用两个相同的二元分类器
分别检测主体的起始位置和结束位置
。当置信度大于阈值标记为1,小于阈值标记为0。
- 主体标记模块损失函数为BCELoss。
- 采用两个相同的二元分类器
-
特定关系下客体的标记模块(Relation-Specific Object Taggers)。
- 结构和subject tagger相同,每个关系都有一个object tagger。
-
2.3 模型局限性
- 因为实体就近匹配,无法解决实体嵌套的场景,
"""
假设有下面的嵌套实体(叶圣陶和叶圣陶散文选集):
叶 圣 陶 散 文 选 集
start 1 0 0 0 0 0 0
end 0 0 1 0 0 0 1
"""
......
# 1、先筛选出大于阈值的实体头和实体尾的位置
start = torch.where(subject_preds[0, :, 0] > 0.6)[0]
end = torch.where(subject_preds[0, :, 1] > 0.5)[0]
# 2、主体抽取的实现代码
subjects = []
for i in start:
j = end[end >= i]
if len(j) > 0:
j = j[0]
subjects.append((i.item(), j.item()))
# 依据代码的逻辑可以看到只能提取到【叶圣陶】实体
- 该模型不适用于长段落、篇章级别信息抽取,因为bert位置编码512位,关系无法跨句子;
3 CasRel在DuIE2.0数据集上的应用
- 这里我们使用一款简洁的训练框架:bert4torch
# bert4torch框架作者知乎:https://www.zhihu.com/people/li-bo-53-72/posts
# https://github.com/Tongjilibo/bert4torch
pip install bert4torch==0.5.0
-
Bert预训练模型依然是哈工大开源的
chinese-macbert-base
- 预训练模型huggingface链接:
https://huggingface.co/hfl/chinese-macbert-base/tree/main - 预训练模型魔搭社区链接:
https://modelscope.cn/models/dienstag/chinese-macbert-base/files
- 预训练模型huggingface链接:
-
百度DuIE2.0中文关系抽取数据集:https://www.luge.ai/#/luge/dataDetail?id=5
-
另外分享一份百度Knowledge Extraction比赛数据集:https://aistudio.baidu.com/datasetdetail/177191
3.1 加载数据集
我们先来看一条训练数据:
{
"text": "《邪少兵王》是冰火未央写的网络小说连载于旗峰天下",
"spo_list": [
{
"predicate": "作者", // 关系
"object_type": {
"@value": "人物"
},
"subject_type": "图书作品",
"object": {
"@value": "冰火未央" // 客体
},
"subject": "邪少兵王" // 主体
}
]
}
我们需要将上面的单条数据转换为下面形式:
// 我们需要将上面的单条数据转换为
//{'text': text, 'spo_list': [(s, p, o)]}
{
'text': "《邪少兵王》是冰火未央写的网络小说连载于旗峰天下",
'spo_list': [('邪少兵王', '作者', '冰火未央')]
}
// 然后将text进行编码,获取token_ids和segment_ids,还需要获取主体及客体在token_ids中的位置
{
'text': '《邪少兵王》是冰火未央写的网络小说连载于旗峰天下',
'spo_list': [('邪少兵王', '作者', '冰火未央')],
'token_ids': [101, 517, 6932, 2208, 1070, 4374, 518, 3221, 1102, 4125, 3313, 1925, 1091, 4638, 5381, 5317, 2207, 6432, 6825, 6770, 754, 3186, 2292, 1921, 678, 102],
'segment_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
// 主体在token_ids中的位置(2, 5),左右都闭
// 客体在token_ids中的位置(8, 11)以及关系的id=7
'spoes': {(2, 5): [(8, 11, 7)]}
}
具体代码实现如下,在调试时候我们可以选取一部分数据进行测试:
#! -*- coding:utf-8 -*-
import json
import platform
import numpy as np
from bert4torch.layers import LayerNorm
from bert4torch.tokenizers import Tokenizer
from bert4torch.models import build_transformer_model, BaseModel
from bert4torch.snippets import sequence_padding, ListDataset
from bert4torch.callbacks import Callback
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader, Dataset
import torch.optim as optim
import torch.nn as nn
maxlen = 128
batch_size = 64
# 获取当前操作系统的名称
os_name = platform.system()
# 设置模型路径及数据集路径
if os_name == "Windows":
# 这里使用哈工大开源的chinese-macbert-base
config_path = r'D:\python\models\berts\chinese-macbert-base\config.json'
checkpoint_path = r'D:\python\models\berts\chinese-macbert-base\pytorch_model.bin'
dict_path = r'D:\python\models\berts\chinese-macbert-base\vocab.txt'
# 数据集使用百度开源的DuIE2.0
train_data_path = r'D:\python\datas\nlp_ner\DuIE2.0\duie_train.json'
dev_data_path = r'D:\python\datas\nlp_ner\DuIE2.0\duie_dev.json'
schema_path = r'D:\python\datas\nlp_ner\DuIE2.0\duie_schema.json'
print("当前执行环境是 Windows...")
elif os_name == "Linux":
config_path = r'/root/autodl-fs/models/chinese-macbert-base/config.json'
checkpoint_path = r'/root/autodl-fs/models/chinese-macbert-base/pytorch_model.bin'
dict_path = r'/root/autodl-fs/models/chinese-macbert-base/vocab.txt'
train_data_path = r'/root/autodl-fs/data/nlp_ai/nlp_ner/duie2/duie_train.json'
dev_data_path = r'/root/autodl-fs/data/nlp_ai/nlp_ner/duie2/duie_dev.json'
schema_path = r'/root/autodl-fs/data/nlp_ai/nlp_ner/duie2/duie_schema.json'
print("当前执行环境是 Linux...")
else:
raise ValueError("当前执行环境不是 Windows 也不是 Linux")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# 加载标签字典
predicate2id, id2predicate = {}, {}
# with open(r'D:\python\datas\nlp_ner\knowledge_extraction\all_50_schemas', encoding='utf-8') as f:
with open(schema_path, encoding='utf-8') as f:
for l in f:
l = json.loads(l)
if l['predicate'] not in predicate2id:
id2predicate[len(predicate2id)] = l['predicate']
predicate2id[l['predicate']] = len(predicate2id)
# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True)
# 解析样本
def get_spoes(text, spo_list):
'''单独抽出来,这样读取数据时候,可以根据spoes来选择跳过
'''
def search(pattern, sequence):
"""从sequence中寻找子串pattern
如果找到,返回第一个下标;否则返回-1。
"""
n = len(pattern)
for i in range(len(sequence)):
if sequence[i:i + n] == pattern:
return i
return -1
token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
# 整理三元组 {s: [(o, p)]}
spoes = {}
for s, p, o in spo_list:
s = tokenizer.encode(s)[0][1:-1]
p = predicate2id[p]
o = tokenizer.encode(o)[0][1:-1]
s_idx = search(s, token_ids)
o_idx = search(o, token_ids)
if s_idx != -1 and o_idx != -1:
s = (s_idx, s_idx + len(s) - 1)
o = (o_idx, o_idx + len(o) - 1, p)
if s not in spoes:
spoes[s] = []
spoes[s].append(o)
return token_ids, segment_ids, spoes
# 加载数据集
class MyDataset(ListDataset):
@staticmethod
def load_data(filename):
"""加载数据
单条格式:{'text': text, 'spo_list': [(s, p, o)]}
"""
D = []
with open(filename, encoding='utf-8') as f:
for l in tqdm(f):
l = json.loads(l)
labels = [(spo['subject'], spo['predicate'], spo['object']['@value']) for spo in l['spo_list']]
token_ids, segment_ids, spoes = get_spoes(l['text'], labels)
if spoes:
D.append({'text': l['text'], 'spo_list': labels, 'token_ids': token_ids,
'segment_ids': segment_ids, 'spoes': spoes})
# 这里可以选一部分数据进行测试
# if len(D) > 100:
# break
print(f'loaded data nums = {len(D)} from {filename}')
return D
3.2 构建DataLoader
- 利用collate_fn方法构建subject标签、object标签,并进行填充
- 注意:这里是随机选一个subject
def collate_fn(batch):
batch_token_ids, batch_segment_ids = [], []
batch_subject_labels, batch_subject_ids, batch_object_labels = [], [], []
for d in batch:
token_ids, segment_ids, spoes = d['token_ids'], d['segment_ids'], d['spoes']
if spoes:
# 1、subject标签
subject_labels = np.zeros((len(token_ids), 2))
for s in spoes:
subject_labels[s[0], 0] = 1 # subject首
subject_labels[s[1], 1] = 1 # subject尾
# 随机选一个subject(这里没有实现错误!这就是想要的效果!!)
start, end = np.array(list(spoes.keys())).T
start = np.random.choice(start)
end = np.random.choice(end[end >= start])
subject_ids = (start, end)
# 2、对应的object标签
# 后面sequence_padding方法中是对第1维数据进行填充,因此需要把len(token_ids)放在第1维
object_labels = np.zeros((len(token_ids), len(predicate2id), 2))
for o in spoes.get(subject_ids, []):
object_labels[o[0], o[2], 0] = 1
object_labels[o[1], o[2], 1] = 1
# 构建batch
batch_token_ids.append(token_ids)
batch_segment_ids.append(segment_ids)
batch_subject_labels.append(subject_labels)
batch_subject_ids.append(subject_ids)
batch_object_labels.append(object_labels)
# 填充
batch_token_ids = torch.tensor(sequence_padding(batch_token_ids), dtype=torch.long, device=device)
batch_segment_ids = torch.tensor(sequence_padding(batch_segment_ids), dtype=torch.long, device=device)
batch_subject_labels = torch.tensor(sequence_padding(batch_subject_labels), dtype=torch.float, device=device)
batch_subject_ids = torch.tensor(batch_subject_ids, dtype=torch.long, device=device)
batch_object_labels = torch.tensor(sequence_padding(batch_object_labels), dtype=torch.float, device=device)
batch_attention_mask = (batch_token_ids != tokenizer._token_pad_id)
return [batch_token_ids, batch_segment_ids, batch_subject_ids], [batch_subject_labels, batch_object_labels, batch_attention_mask]
# 构造训练集的DataLoader
train_dataset = MyDataset(train_data_path)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
# 构造测试集的DataLoader
valid_dataset = MyDataset(dev_data_path)
valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, collate_fn=collate_fn)
3.3 定义CasRel模型
- 注意:这里使用Conditional Layer Normalization将subject融入到object的预测中
- 常见的归一化可以参考:
Pytorch常用的函数(六)常见的归一化总结(BatchNorm/LayerNorm/InsNorm/GroupNorm) - 我们看下condLayerNorm实现的核心代码:
# bert4torch/layers/core.py
class LayerNorm(nn.Module):
def __init__(self, hidden_size:int, eps:float=1e-12, conditional_size:Union[bool, int]=False, weight:bool=True, bias:bool=True,
norm_mode:Literal['normal', 'torch_buildin', 'rmsnorm']='normal', **kwargs):
""" layernorm层,自行实现是为了兼容conditianal layernorm,使得可以做条件文本生成、条件分类等任务
:param hidden_size: int, layernorm的神经元个数
:param eps: float
:param conditional_size: int, condition layernorm的神经元个数; 详情:https://spaces.ac.cn/archives/7124
:param weight: bool, 是否包含权重
:param bias: bool, 是否包含偏置
:param norm_mode: str, `normal`, `rmsnorm`, `torch_buildin`
"""
......
# 条件layernorm, 用于条件文本生成
if conditional_size:
# 这里采用全零初始化, 目的是在初始状态不干扰原来的预训练权重
self.dense1 = nn.Linear(conditional_size, hidden_size, bias=False)
self.dense1.weight.data.uniform_(0, 0)
self.dense2 = nn.Linear(conditional_size, hidden_size, bias=False)
self.dense2.weight.data.uniform_(0, 0)
def forward(self, hidden_states:torch.FloatTensor, cond:Optional[torch.Tensor]=None):
......
# 自行实现的LayerNorm
else:
u = hidden_states.mean(-1, keepdim=True)
s = (hidden_states - u).pow(2).mean(-1, keepdim=True)
o = (hidden_states - u) / torch.sqrt(s + self.eps)
if not hasattr(self, 'weight'):
self.weight = 1
if self.conditional_size and (cond is not None):
# 会进入此分支
for _ in range(len(hidden_states.shape) - len(cond.shape)):
# cond就是将subject的start和end向量concat一起
# [bs, hidden_size*2] -> [bs, 1, hidden_size*2]
cond = cond.unsqueeze(dim=1)
# 通过下面代码将subject融入到object的预测中
# o是经过原始LayerNorm后的值
# (self.weight + self.dense1(cond))相当于gamma
# self.dense2(cond)相当于beta
output = (self.weight + self.dense1(cond)) * o + self.dense2(cond)
else:
output = self.weight * o
if hasattr(self, 'bias') and (self.bias is not None):
output += self.bias
return output.type_as(hidden_states)
# 定义bert上的模型结构
class Model(BaseModel):
def __init__(self) -> None:
super().__init__()
self.bert = build_transformer_model(config_path, checkpoint_path)
self.linear1 = nn.Linear(768, 2)
"""
苏神博客:https://spaces.ac.cn/archives/7124
在Bert等Transformer模型中,主要的Normalization方法是Layer Normalization
,所以很自然就能想到将对应的β和γ变成输入条件的函数,来控制Transformer模型的生成行为
,这就是Conditional Layer Normalization的线索思路。
这里通过Conditional Layer Normalization将subject融入到object的预测中
"""
self.condLayerNorm = LayerNorm(hidden_size=768, conditional_size=768*2)
self.linear2 = nn.Linear(768, len(predicate2id)*2)
@staticmethod
def extract_subject(inputs):
"""
根据subject_ids从output中取出subject的向量表征
:param inputs: [seq_output, subject_ids]
seq_output是模型预测的每个token属于start和end概率结果,shape=(bs, seq_len, hidden_size)
subject_ids是主体的id,shape=(bs, 2)
:return: subject的向量表征 shape = (bs, hidden_size * 2)
"""
output, subject_ids = inputs
# torch.gather函数:https://blog.csdn.net/qq_44665283/article/details/134088676
# 1、取出主体start和end向量的向量表征
# start shape = (bs, 1, hidden_size)
start = torch.gather(output, dim=1, index=subject_ids[:, :1].unsqueeze(2).expand(-1, -1, output.shape[-1]))
# end shape = (bs, 1, hidden_size)
end = torch.gather(output, dim=1, index=subject_ids[:, 1:].unsqueeze(2).expand(-1, -1, output.shape[-1]))
# 2、concat
subject = torch.cat([start, end], 2)
return subject[:, 0]
def forward(self, *inputs):
"""
:param inputs: collate_fn函数会将batch数据集组装成train_X, train_y
这里的inputs就是train_X,即[batch_token_ids, batch_segment_ids, batch_subject_ids]
:return: 主体和客体的预测值
"""
token_ids, segment_ids, subject_ids = inputs
# 预测subject
seq_output = self.bert(token_ids, segment_ids) # [bs, seq_len, hidden_size]
subject_preds = (torch.sigmoid(self.linear1(seq_output)))**2 # [btz, seq_len, 2]
# 传入subject,预测object
subject = self.extract_subject([seq_output, subject_ids])
# Note: 通过Conditional Layer Normalization将subject融入到object的预测中
# 理论上应该用LayerNorm前的,但是这样只能返回各个block顶层输出,这里和keras实现不一致
output = self.condLayerNorm(seq_output, subject)
# 进行客体的分类预测
output = (torch.sigmoid(self.linear2(output)))**4
# (bs, seq_len, len(predicate2id)*2) -> (bs, seq_len, len(predicate2id), 2)
object_preds = output.reshape(*output.shape[:2], len(predicate2id), 2)
return [subject_preds, object_preds]
def predict_subject(self, inputs):
"""
主体预测
:param inputs: [batch_token_ids, batch_segment_ids, batch_subject_ids]
:return: [seq_output, subject_preds]
每个token的向量表示:seq_output shape = [bs, seq_len, hidden_size]
每个token属于主体的start和end的概率:subject_preds shape = [bs, seq_len, 2]
"""
self.eval()
with torch.no_grad():
seq_output = self.bert(inputs[:2]) # [bs, seq_len, hidden_size]
subject_preds = (torch.sigmoid(self.linear1(seq_output)))**2 # [bs, seq_len, 2]
return [seq_output, subject_preds]
def predict_object(self, inputs):
"""
客体预测
:param inputs: 主体预测的输出[seq_output, subject_preds]
:return: 客体预测结果 shape = (bs, seq_len, len(predicate2id), 2)
"""
self.eval()
with torch.no_grad():
seq_output, subject_ids = inputs
# 根据subject_ids从output中取出subject的向量表征
subject = self.extract_subject([seq_output, subject_ids])
# 通过Conditional Layer Normalization将subject融入到object的预测中
output = self.condLayerNorm(seq_output, subject)
# 客体预测的置信度
output = (torch.sigmoid(self.linear2(output)))**4
object_preds = output.reshape(*output.shape[:2], len(predicate2id), 2)
return object_preds
train_model = Model().to(device)
3.4 定义损失函数、评估函数
- 损失函数就是主体BCELoss+客体BCELoss
- 评估函数,计算f1、precision、recall
class BCELoss(nn.BCELoss):
def __init__(self, **kwargs):
super().__init__(**kwargs)
def forward(self, inputs, targets):
"""
loss计算
:param inputs: Model模型forward方法的输出内容,即[subject_preds, object_preds]
:param targets: collate_fn函数会将batch数据集组装成train_X, train_y
这里的targets就是train_y,即[batch_subject_labels, batch_object_labels, batch_attention_mask]
:return: 主体loss+客体loss
"""
subject_preds, object_preds = inputs
subject_labels, object_labels, mask = targets
# sujuect部分loss
subject_loss = super().forward(subject_preds, subject_labels)
subject_loss = subject_loss.mean(dim=-1)
subject_loss = (subject_loss * mask).sum() / mask.sum()
# object部分loss
object_loss = super().forward(object_preds, object_labels)
object_loss = object_loss.mean(dim=-1).sum(dim=-1)
object_loss = (object_loss * mask).sum() / mask.sum()
return subject_loss + object_loss
train_model.compile(loss=BCELoss(reduction='none'), optimizer=optim.Adam(train_model.parameters(), 1e-5))
def extract_spoes(text):
"""抽取输入text所包含的三元组
"""
tokens = tokenizer.tokenize(text, maxlen=maxlen)
mapping = tokenizer.rematch(text, tokens)
token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
token_ids = torch.tensor([token_ids], dtype=torch.long, device=device)
segment_ids = torch.tensor([segment_ids], dtype=torch.long, device=device)
# 抽取subject,主体头和尾的阈值分别为:0.6和0.5
seq_output, subject_preds = train_model.predict_subject([token_ids, segment_ids])
subject_preds[:, [0, -1]] *= 0 # 首cls, 尾sep置为0
# 1、先筛选出大于阈值的实体头和实体尾的位置
start = torch.where(subject_preds[0, :, 0] > 0.6)[0]
end = torch.where(subject_preds[0, :, 1] > 0.5)[0]
# 2、主体抽取的实现代码
subjects = []
for i in start:
j = end[end >= i]
if len(j) > 0:
j = j[0]
subjects.append((i.item(), j.item()))
# 3、如果存在主体,就构造(主体、关系、客体)三元组
if subjects:
spoes = []
seq_output = seq_output.repeat([len(subjects)]+[1]*(len(seq_output.shape)-1))
subjects = torch.tensor(subjects, dtype=torch.long, device=device)
# 传入subject,抽取object和predicate
object_preds = train_model.predict_object([seq_output, subjects])
object_preds[:, [0, -1]] *= 0
for subject, object_pred in zip(subjects, object_preds):
# 客体的阈值
start = torch.where(object_pred[:, :, 0] > 0.6)
end = torch.where(object_pred[:, :, 1] > 0.5)
for _start, predicate1 in zip(*start):
for _end, predicate2 in zip(*end):
if _start <= _end and predicate1 == predicate2:
spoes.append(
(
(mapping[subject[0]][0], mapping[subject[1]][-1]),
predicate1.item(),
(mapping[_start][0], mapping[_end][-1])
)
)
break
return [(text[s[0]:s[1] + 1], id2predicate[p], text[o[0]:o[1] + 1])
for s, p, o, in spoes]
else:
return []
class SPO(tuple):
"""用来存三元组的类
表现跟tuple基本一致,只是重写了 __hash__ 和 __eq__ 方法,
使得在判断两个三元组是否等价时容错性更好。
"""
def __init__(self, spo):
self.spox = (
tuple(tokenizer.tokenize(spo[0])),
spo[1],
# tuple(tokenizer.tokenize(spo[2])),
tuple(tokenizer.tokenize(spo[2])),
)
def __hash__(self):
return self.spox.__hash__()
def __eq__(self, spo):
return self.spox == spo.spox
def evaluate(data):
"""评估函数,计算f1、precision、recall
"""
X, Y, Z = 1e-10, 1e-10, 1e-10
f = open('dev_pred.json', 'w', encoding='utf-8')
pbar = tqdm()
for d in data:
# 预测三元组集合
R = set([SPO(spo) for spo in extract_spoes(d['text'])])
# 真实三元组集合
T = set([SPO(spo) for spo in d['spo_list']])
X += len(R & T)
Y += len(R)
Z += len(T)
# 计算f1、precision、recall指标
f1, precision, recall = 2 * X / (Y + Z), X / Y, X / Z
pbar.update()
pbar.set_description(
'f1: %.5f, precision: %.5f, recall: %.5f' % (f1, precision, recall)
)
s = json.dumps({
'text': d['text'],
'spo_list': list(T),
'spo_list_pred': list(R),
'new': list(R - T),
'lack': list(T - R),
},
ensure_ascii=False,
indent=4)
f.write(s + '\n')
pbar.close()
f.close()
return f1, precision, recall
class Evaluator(Callback):
"""评估与保存
"""
def __init__(self):
self.best_val_f1 = 0.
def on_epoch_end(self, steps, epoch, logs=None):
# optimizer.apply_ema_weights()
f1, precision, recall = evaluate(valid_dataset.data)
if f1 >= self.best_val_f1:
self.best_val_f1 = f1
train_model.save_weights('best_model.pt')
# optimizer.reset_old_weights()
print(
'f1: %.5f, precision: %.5f, recall: %.5f, best f1: %.5f\n' %
(f1, precision, recall, self.best_val_f1)
)
if __name__ == '__main__':
# 训练
if True:
evaluator = Evaluator()
train_model.fit(train_dataloader, steps_per_epoch=None, epochs=5, callbacks=[evaluator])
# 预测并评估
else:
train_model.load_weights('best_model.pt')
f1, precision, recall = evaluate(valid_dataset.data)
# batch_size = 64设置下,训练过程中的资源消耗(2080Ti)
# 全量数据进行训练,训练一个epoch消耗时间25min左右
(transformers) root@autodl-container-adbc11ae52-f2ebff02:~/autodl-tmp/NLP_AI/a_re# nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 525.89.02 Driver Version: 525.89.02 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... On | 00000000:B2:00.0 Off | N/A |
|111% 74C P2 240W / 250W | 10940MiB / 11264MiB | 96% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
+-----------------------------------------------------------------------------+
# 这里只训练了5个epochs,有兴趣的可以多训练一些批次
# 训练5个epochs的效果如下
f1: 0.74309, precision: 0.78018, recall: 0.70936