《昇思25天学习打卡营第19天|生成式-Pix2Pix实现图像转换》

news2025/1/8 20:13:43

学习内容:Pix2Pix实现图像转换

1.模型简介

Pix2Pix是基于条件生成对抗网络(cGAN, Condition Generative Adversarial Networks )实现的一种深度学习图像转换模型,该模型是由Phillip Isola等作者在2017年CVPR上提出的,可以实现语义/标签到真实图片、灰度图到彩色图、航空图到地图、白天到黑夜、线稿图到实物图的转换。
Pix2Pix是将cGAN应用于有监督的图像到图像翻译的经典之作,其包括两个模型:生成器和判别器
传统上,尽管此类任务的目标都是相同的从像素预测像素,但每项都是用单独的专用机器来处理的。而Pix2Pix使用的网络作为一个通用框架,使用相同的架构和目标,只在不同的数据上进行训练,即可得到令人满意的结果。

基础原理
  • cGAN的生成器与传统GAN的生成器在原理上有一些区别:
    cGAN的生成器是将输入图片作为指导信息,由输入图像不断尝试生成用于迷惑判别器的“假”图像,由输入图像转换输出为相应“假”图像的本质是从像素到另一个像素的映射,而传统GAN的生成器是基于一个给定的随机噪声生成图像,输出图像通过其他约束条件控制生成,这是cGAN和GAN的在图像翻译任务中的差异。
    Pix2Pix中判别器的任务是判断从生成器输出的图像是真实的训练图像还是生成的“假”图像。在生成器与判别器的不断博弈过程中,模型会达到一个平衡点,生成器输出的图像与真实训练数据使得判别器刚好具有50%的概率判断正确。

cGAN的目标可以表示为:
在这里插入图片描述

  • 𝑥:代表观测图像的数据。
  • 𝑧:代表随机噪声的数据。
  • 𝑦=𝐺(𝑥,𝑧):生成器网络,给出由观测图像 𝑥与随机噪声 𝑧生成的“假”图片,其中 𝑥来自于训练数据而非生成器。
  • 𝐷(𝑥,𝐺(𝑥,𝑧)):判别器网络,给出图像判定为真实图像的概率,其中 𝑥来自于训练数据, 𝐺(𝑥,𝑧) 来自于生成器。
    该公式是cGAN的损失函数,D想要尽最大努力去正确分类真实图像与“假”图像,也就是使参数 𝑙𝑜𝑔𝐷(𝑥,𝑦)最大化;而G则尽最大努力用生成的“假”图像 𝑦欺骗D,避免被识破,也就是使参数 𝑙𝑜𝑔(1−𝐷(𝐺(𝑥,𝑧)))最小化。
    cGAN的目标可简化为:
    在这里插入图片描述
    在这里插入图片描述
    为了对比cGAN和GAN的不同,我们将GAN的目标也进行了说明:
    在这里插入图片描述
    从公式可以看出,GAN直接由随机噪声 𝑧生成“假”图像,不借助观测图像 𝑥的任何信息。过去的经验告诉我们,GAN与传统损失混合使用是有好处的,判别器的任务不变,依旧是区分真实图像与“假”图像,但是生成器的任务不仅要欺骗判别器,还要在传统损失的基础上接近训练数据。
    假设cGAN与L1正则化混合使用,那么有:
    在这里插入图片描述
    进而得到最终目标:
    在这里插入图片描述
    图像转换问题本质上其实就是像素到像素的映射问题,Pix2Pix使用完全一样的网络结构和目标函数,仅更换不同的训练数据集就能分别实现以上的任务。

2.应用案例

2.1数据准备和处理

本案例使用指定数据集,该数据集是已经经过处理的外墙(facades)数据,可以直接使用mindspore.dataset的方法读取。

数据集下载
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/dataset_pix2pix.tar"

download(url, "./dataset", kind="tar", replace=True)
数据显示

调用Pix2PixDataset和create_train_dataset读取训练集,这里我们直接下载已经处理好的数据集。

from mindspore import dataset as ds
import matplotlib.pyplot as plt

dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True)
data_iter = next(dataset.create_dict_iterator(output_numpy=True))
# 可视化部分训练数据
plt.figure(figsize=(10, 3), dpi=140)
for i, image in enumerate(data_iter['input_images'][:10], 1):
    plt.subplot(3, 10, i)
    plt.axis("off")
    plt.imshow((image.transpose(1, 2, 0) + 1) / 2)
plt.show()

在这里插入图片描述

2.2创建网络

当处理完数据后,就可以来进行网络的搭建了。网络搭建将逐一详细讨论生成器、判别器和损失函数。生成器G用到的是U-Net结构,输入的轮廓图 𝑥编码再解码成真是图片,判别器D用到的是作者自己提出来的条件判别器PatchGAN,判别器D的作用是在轮廓图 𝑥的条件下,对于生成的图片 𝐺(𝑥)判断为假,对于真实判断为真。

生成器G结构

U-Net是德国Freiburg大学模式识别和图像处理组提出的一种全卷积结构。它分为两个部分,其中左侧是由卷积和降采样操作组成的压缩路径,右侧是由卷积和上采样组成的扩张路径,扩张的每个网络块的输入由上一层上采样的特征和压缩路径部分的特征拼接而成。网络模型整体是一个U形的结构,因此被叫做U-Net。和常见的先降采样到低维度,再升采样到原始分辨率的编解码结构的网络相比,U-Net的区别是加入skip-connection,对应的feature maps和decode之后的同样大小的feature maps按通道拼一起,用来保留不同分辨率下像素级的细节信息。
在这里插入图片描述
定义UNet Skip Connection Block

import mindspore
import mindspore.nn as nn
import mindspore.ops as ops

class UNetSkipConnectionBlock(nn.Cell):
    def __init__(self, outer_nc, inner_nc, in_planes=None, dropout=False,
                 submodule=None, outermost=False, innermost=False, alpha=0.2, norm_mode='batch'):
        super(UNetSkipConnectionBlock, self).__init__()
        down_norm = nn.BatchNorm2d(inner_nc)
        up_norm = nn.BatchNorm2d(outer_nc)
        use_bias = False
        if norm_mode == 'instance':
            down_norm = nn.BatchNorm2d(inner_nc, affine=False)
            up_norm = nn.BatchNorm2d(outer_nc, affine=False)
            use_bias = True
        if in_planes is None:
            in_planes = outer_nc
        down_conv = nn.Conv2d(in_planes, inner_nc, kernel_size=4,
                              stride=2, padding=1, has_bias=use_bias, pad_mode='pad')
        down_relu = nn.LeakyReLU(alpha)
        up_relu = nn.ReLU()
        if outermost:
            up_conv = nn.Conv2dTranspose(inner_nc * 2, outer_nc,
                                         kernel_size=4, stride=2,
                                         padding=1, pad_mode='pad')
            down = [down_conv]
            up = [up_relu, up_conv, nn.Tanh()]
            model = down + [submodule] + up
        elif innermost:
            up_conv = nn.Conv2dTranspose(inner_nc, outer_nc,
                                         kernel_size=4, stride=2,
                                         padding=1, has_bias=use_bias, pad_mode='pad')
            down = [down_relu, down_conv]
            up = [up_relu, up_conv, up_norm]
            model = down + up
        else:
            up_conv = nn.Conv2dTranspose(inner_nc * 2, outer_nc,
                                         kernel_size=4, stride=2,
                                         padding=1, has_bias=use_bias, pad_mode='pad')
            down = [down_relu, down_conv, down_norm]
            up = [up_relu, up_conv, up_norm]

            model = down + [submodule] + up
            if dropout:
                model.append(nn.Dropout(p=0.5))
        self.model = nn.SequentialCell(model)
        self.skip_connections = not outermost

    def construct(self, x):
        out = self.model(x)
        if self.skip_connections:
            out = ops.concat((out, x), axis=1)
        return out

基于UNet的生成器

class UNetGenerator(nn.Cell):
    def __init__(self, in_planes, out_planes, ngf=64, n_layers=8, norm_mode='bn', dropout=False):
        super(UNetGenerator, self).__init__()
        unet_block = UNetSkipConnectionBlock(ngf * 8, ngf * 8, in_planes=None, submodule=None,
                                             norm_mode=norm_mode, innermost=True)
        for _ in range(n_layers - 5):
            unet_block = UNetSkipConnectionBlock(ngf * 8, ngf * 8, in_planes=None, submodule=unet_block,
                                                 norm_mode=norm_mode, dropout=dropout)
        unet_block = UNetSkipConnectionBlock(ngf * 4, ngf * 8, in_planes=None, submodule=unet_block,
                                             norm_mode=norm_mode)
        unet_block = UNetSkipConnectionBlock(ngf * 2, ngf * 4, in_planes=None, submodule=unet_block,
                                             norm_mode=norm_mode)
        unet_block = UNetSkipConnectionBlock(ngf, ngf * 2, in_planes=None, submodule=unet_block,
                                             norm_mode=norm_mode)
        self.model = UNetSkipConnectionBlock(out_planes, ngf, in_planes=in_planes, submodule=unet_block,
                                             outermost=True, norm_mode=norm_mode)

    def construct(self, x):
        return self.model(x)

原始cGAN的输入是条件x和噪声z两种信息,这里的生成器只使用了条件信息,因此不能生成多样性的结果。因此Pix2Pix在训练和测试时都使用了dropout,这样可以生成多样性的结果。

基于PatchGAN的判别器

判别器使用的PatchGAN结构,可看做卷积。生成的矩阵中的每个点代表原图的一小块区域(patch)。通过矩阵中的各个值来判断原图中对应每个Patch的真假。

import mindspore.nn as nn

class ConvNormRelu(nn.Cell):
    def __init__(self,
                 in_planes,
                 out_planes,
                 kernel_size=4,
                 stride=2,
                 alpha=0.2,
                 norm_mode='batch',
                 pad_mode='CONSTANT',
                 use_relu=True,
                 padding=None):
        super(ConvNormRelu, self).__init__()
        norm = nn.BatchNorm2d(out_planes)
        if norm_mode == 'instance':
            norm = nn.BatchNorm2d(out_planes, affine=False)
        has_bias = (norm_mode == 'instance')
        if not padding:
            padding = (kernel_size - 1) // 2
        if pad_mode == 'CONSTANT':
            conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad',
                             has_bias=has_bias, padding=padding)
            layers = [conv, norm]
        else:
            paddings = ((0, 0), (0, 0), (padding, padding), (padding, padding))
            pad = nn.Pad(paddings=paddings, mode=pad_mode)
            conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad', has_bias=has_bias)
            layers = [pad, conv, norm]
        if use_relu:
            relu = nn.ReLU()
            if alpha > 0:
                relu = nn.LeakyReLU(alpha)
            layers.append(relu)
        self.features = nn.SequentialCell(layers)

    def construct(self, x):
        output = self.features(x)
        return output

class Discriminator(nn.Cell):
    def __init__(self, in_planes=3, ndf=64, n_layers=3, alpha=0.2, norm_mode='batch'):
        super(Discriminator, self).__init__()
        kernel_size = 4
        layers = [
            nn.Conv2d(in_planes, ndf, kernel_size, 2, pad_mode='pad', padding=1),
            nn.LeakyReLU(alpha)
        ]
        nf_mult = ndf
        for i in range(1, n_layers):
            nf_mult_prev = nf_mult
            nf_mult = min(2 ** i, 8) * ndf
            layers.append(ConvNormRelu(nf_mult_prev, nf_mult, kernel_size, 2, alpha, norm_mode, padding=1))
        nf_mult_prev = nf_mult
        nf_mult = min(2 ** n_layers, 8) * ndf
        layers.append(ConvNormRelu(nf_mult_prev, nf_mult, kernel_size, 1, alpha, norm_mode, padding=1))
        layers.append(nn.Conv2d(nf_mult, 1, kernel_size, 1, pad_mode='pad', padding=1))
        self.features = nn.SequentialCell(layers)

    def construct(self, x, y):
        x_y = ops.concat((x, y), axis=1)
        output = self.features(x_y)
        return output
Pix2Pix的生成器和判别器初始化

实例化Pix2Pix生成器和判别器。

import mindspore.nn as nn
from mindspore.common import initializer as init

g_in_planes = 3
g_out_planes = 3
g_ngf = 64
g_layers = 8
d_in_planes = 6
d_ndf = 64
d_layers = 3
alpha = 0.2
init_gain = 0.02
init_type = 'normal'


net_generator = UNetGenerator(in_planes=g_in_planes, out_planes=g_out_planes,
                              ngf=g_ngf, n_layers=g_layers)
for _, cell in net_generator.cells_and_names():
    if isinstance(cell, (nn.Conv2d, nn.Conv2dTranspose)):
        if init_type == 'normal':
            cell.weight.set_data(init.initializer(init.Normal(init_gain), cell.weight.shape))
        elif init_type == 'xavier':
            cell.weight.set_data(init.initializer(init.XavierUniform(init_gain), cell.weight.shape))
        elif init_type == 'constant':
            cell.weight.set_data(init.initializer(0.001, cell.weight.shape))
        else:
            raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
    elif isinstance(cell, nn.BatchNorm2d):
        cell.gamma.set_data(init.initializer('ones', cell.gamma.shape))
        cell.beta.set_data(init.initializer('zeros', cell.beta.shape))


net_discriminator = Discriminator(in_planes=d_in_planes, ndf=d_ndf,
                                  alpha=alpha, n_layers=d_layers)
for _, cell in net_discriminator.cells_and_names():
    if isinstance(cell, (nn.Conv2d, nn.Conv2dTranspose)):
        if init_type == 'normal':
            cell.weight.set_data(init.initializer(init.Normal(init_gain), cell.weight.shape))
        elif init_type == 'xavier':
            cell.weight.set_data(init.initializer(init.XavierUniform(init_gain), cell.weight.shape))
        elif init_type == 'constant':
            cell.weight.set_data(init.initializer(0.001, cell.weight.shape))
        else:
            raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
    elif isinstance(cell, nn.BatchNorm2d):
        cell.gamma.set_data(init.initializer('ones', cell.gamma.shape))
        cell.beta.set_data(init.initializer('zeros', cell.beta.shape))

class Pix2Pix(nn.Cell):
    """Pix2Pix模型网络"""
    def __init__(self, discriminator, generator):
        super(Pix2Pix, self).__init__(auto_prefix=True)
        self.net_discriminator = discriminator
        self.net_generator = generator

    def construct(self, reala):
        fakeb = self.net_generator(reala)
        return fakeb

2.3模型训练

训练分为两个主要部分:训练判别器和训练生成器。训练判别器的目的是最大程度地提高判别图像真伪的概率。训练生成器是希望能产生更好的虚假图像。在这两个部分中,分别获取训练过程中的损失,并在每个周期结束时进行统计。

下面进行训练:

import numpy as np
import os
import datetime
from mindspore import value_and_grad, Tensor

epoch_num = 3
ckpt_dir = "results/ckpt"
dataset_size = 400
val_pic_size = 256
lr = 0.0002
n_epochs = 100
n_epochs_decay = 100

def get_lr():
    lrs = [lr] * dataset_size * n_epochs
    lr_epoch = 0
    for epoch in range(n_epochs_decay):
        lr_epoch = lr * (n_epochs_decay - epoch) / n_epochs_decay
        lrs += [lr_epoch] * dataset_size
    lrs += [lr_epoch] * dataset_size * (epoch_num - n_epochs_decay - n_epochs)
    return Tensor(np.array(lrs).astype(np.float32))

dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True, num_parallel_workers=1)
steps_per_epoch = dataset.get_dataset_size()
loss_f = nn.BCEWithLogitsLoss()
l1_loss = nn.L1Loss()

def forword_dis(reala, realb):
    lambda_dis = 0.5
    fakeb = net_generator(reala)
    pred0 = net_discriminator(reala, fakeb)
    pred1 = net_discriminator(reala, realb)
    loss_d = loss_f(pred1, ops.ones_like(pred1)) + loss_f(pred0, ops.zeros_like(pred0))
    loss_dis = loss_d * lambda_dis
    return loss_dis

def forword_gan(reala, realb):
    lambda_gan = 0.5
    lambda_l1 = 100
    fakeb = net_generator(reala)
    pred0 = net_discriminator(reala, fakeb)
    loss_1 = loss_f(pred0, ops.ones_like(pred0))
    loss_2 = l1_loss(fakeb, realb)
    loss_gan = loss_1 * lambda_gan + loss_2 * lambda_l1
    return loss_gan

d_opt = nn.Adam(net_discriminator.trainable_params(), learning_rate=get_lr(),
                beta1=0.5, beta2=0.999, loss_scale=1)
g_opt = nn.Adam(net_generator.trainable_params(), learning_rate=get_lr(),
                beta1=0.5, beta2=0.999, loss_scale=1)

grad_d = value_and_grad(forword_dis, None, net_discriminator.trainable_params())
grad_g = value_and_grad(forword_gan, None, net_generator.trainable_params())

def train_step(reala, realb):
    loss_dis, d_grads = grad_d(reala, realb)
    loss_gan, g_grads = grad_g(reala, realb)
    d_opt(d_grads)
    g_opt(g_grads)
    return loss_dis, loss_gan

if not os.path.isdir(ckpt_dir):
    os.makedirs(ckpt_dir)

g_losses = []
d_losses = []
data_loader = dataset.create_dict_iterator(output_numpy=True, num_epochs=epoch_num)

for epoch in range(epoch_num):
    for i, data in enumerate(data_loader):
        start_time = datetime.datetime.now()
        input_image = Tensor(data["input_images"])
        target_image = Tensor(data["target_images"])
        dis_loss, gen_loss = train_step(input_image, target_image)
        end_time = datetime.datetime.now()
        delta = (end_time - start_time).microseconds
        if i % 2 == 0:
            print("ms per step:{:.2f}  epoch:{}/{}  step:{}/{}  Dloss:{:.4f}  Gloss:{:.4f} ".format((delta / 1000), (epoch + 1), (epoch_num), i, steps_per_epoch, float(dis_loss), float(gen_loss)))
        d_losses.append(dis_loss.asnumpy())
        g_losses.append(gen_loss.asnumpy())
    if (epoch + 1) == epoch_num:
        mindspore.save_checkpoint(net_generator, ckpt_dir + "Generator.ckpt")

2.4模型推理

获取上述训练过程完成后的ckpt文件,通过load_checkpoint和load_param_into_net将ckpt中的权重参数导入到模型中,获取数据进行推理并对推理的效果图进行演示(由于时间问题,训练过程只进行了3个epoch,可根据需求调整epoch)。

from mindspore import load_checkpoint, load_param_into_net

param_g = load_checkpoint(ckpt_dir + "Generator.ckpt")
load_param_into_net(net_generator, param_g)
dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True)
data_iter = next(dataset.create_dict_iterator())
predict_show = net_generator(data_iter["input_images"])
plt.figure(figsize=(10, 3), dpi=140)
for i in range(10):
    plt.subplot(2, 10, i + 1)
    plt.imshow((data_iter["input_images"][i].asnumpy().transpose(1, 2, 0) + 1) / 2)
    plt.axis("off")
    plt.subplots_adjust(wspace=0.05, hspace=0.02)
    plt.subplot(2, 10, i + 11)
    plt.imshow((predict_show[i].asnumpy().transpose(1, 2, 0) + 1) / 2)
    plt.axis("off")
    plt.subplots_adjust(wspace=0.05, hspace=0.02)
plt.show()

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1921949.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于javaScript的简易ATM机

目录 一.设计要求 二.设计思路 三.案例展示 四.源代码展示 一.设计要求 首先里面已经存放了100元钱。如果用户执行存钱操作,就将输入进去的存钱数目和现有的钱相加,再显示余额提示框。如果用户执行取钱操作,就用现有的钱减去要取出钱的数目…

AutoHotKey自动热键(七)WINDOWS按键映射与鼠标映射(替换/组合)

该脚本支持简单的按键替换,可以针对某个窗口进行按键替换,还可以对鼠标和键盘进行互相替换,也可以用来禁用一些按键 键盘按键映射 普通按键映射 a::b这样子就直接在全局把所有的a键输入都映射成b键输出 上面这一行在执行过程中相当于拆解成下面两个,第一个是按下,第二个是弹…

【刷题汇总 --游游的水果大礼包、买卖股票的最好时机(二)、倒置字符串】

C日常刷题积累 今日刷题汇总 - day0111、游游的水果大礼包1.1、题目1.2、思路1.3、程序实现 2、买卖股票的最好时机(二)2.1、题目2.2、思路2.3、程序实现 3、倒置字符串3.1、题目3.2、思路3.3、程序实现 -- c语言3.4、程序实现 -- c 4、题目链接 今日刷题汇总 - day011 1、游游…

U盘打不开的终极解决方案:原因剖析、恢复策略与预防之道

U盘困境:打不开的焦虑与应对 在数字化时代,U盘作为数据交换与存储的重要工具,几乎成为了每个人工作、学习和生活中的必需品。然而,当您满怀期待地将U盘插入电脑,却遭遇“无法识别”、“无法访问”等提示,U…

安装isce2

今天再次尝试安装,之前试过2次都是卡在同一步,今天换成了用mamba conda就没有再报错了 全程参考云军老师的step by step教程,安装成功 GitHub - yunjunz/conda-envs: conda environment setup on Linux / macOS for InSAR data processing …

初识Spring Web MVC

1. 什么是 Spring Web MVC? Spring Web MVC 是基于 Servlet API 构建的原始 Web 框架,从⼀开始就包含在 Spring 框架中。它的正式名称“Spring Web MVC”来⾃其源模块的名称(Spring-webmvc),但它通常被称为"SpringMVC".Servlet&am…

宝马退出价格战,19万买不到i3了

ChatGPT狂飙160天,世界已经不是之前的样子。 更多资源欢迎关注 宝马退出价格战 这一消息,源自知名汽车博主孙少军。 7月11日他发文称,“因价格战导致门店亏损严重,宝马7月将会开始降量保价。” 第二天他又做了补充&#xff0c…

SQL,python,knime将数据混合的文字数字拆出来,合并计算实战

将下面将数据混合的文字数字拆出来,合并计算 一、SQL解决: ---创建表插入数据 CREATE TABLE original_data (id INT AUTO_INCREMENT PRIMARY KEY,city VARCHAR(255),value DECIMAL(10, 2) );INSERT INTO original_data (city, value) VALUES (上海0.5…

如何判断代码是否是在UPDATE TASK的Session中执行?

1. 背景 有时我们想控制ABAP代码在UPDATE TASK中的逻辑,例如某些逻辑执行,某些逻辑不执行。 那么,我们应该如何判断当前代码运行的环境呢?也即,怎么知道一段运行时代码是运行在当前的ABAP session中,还是…

红帽官方福利:RHCE赠送免费补考

RHCE 红帽官方活动【免费补考来了】 新班 7月27日 RHCE 周末班 学完9月底考试,享受免费补考! RHCE9.0 (点击查看课程介绍) 上课课时:72课时/12天考试辅导1-2天 开班频率:2个月开一期 最新新班&#x…

高精度定位与AI技术的深度融合——未来智慧世界的钥匙

引言在当今迅速发展的科技时代,精确定位和人工智能(AI)技术正在快速推动各领域的创新与变革。高精度定位结合AI技术所产生的融合效应,正在加速智慧城市、智能驾驶、智能物流以及许多其他领域的实现。这篇文章将详细探讨高精度定位…

栈(Stack)与队列(Queue,Deque)

前言: 栈与队列在数据结构中用法都相对比较简单,是数据结构中经常用到的两种。 1.栈(Stack) (1)特点: 先入后出,后入先出。栈的底层就是一个数组(java原生库中&#x…

uniapp发送Form Data格式请求

设置header的Content-Type为 application/x-www-form-urlencoded 即可 uni.request({url: , // 接口urldata: {input: 写一篇一千字的作文}, // 入参method: POST, // 参数类型header: {"Content-Type": "application/x-www-form-urlencoded"}, // 请求头…

本地部署,isNet 图像背景去除

目录 摘要 引言 ISNet 架构 关键组件 技术原理 本地部署 运行结果 结论 参考文献 GitHub - xuebinqin/DIS: This is the repo for our new project Highly Accurate Dichotomous Image SegmentationThis is the repo for our new project Highly Accurate Dichotomous…

介绍一款数据准实时复制(CDC)中间件 `Debezium`

简介 文章开头先介绍一下什么是CDC。数据准实时复制(CDC)是目前行内实时数据需求大量使用的技术。常用的中间件有Canal、Debezium、Flink CDC等 下面我们做一下对比 各有优缺点吧,本主要介绍一下Debezium中间件。 Debezium是什么 Debezium是一个为变更数据捕获(CDC)提供…

220.贪心算法:根据身高重建队列(力扣)

代码解决 class Solution { public:// 定义排序规则&#xff1a;首先按身高降序排序&#xff0c;如果身高相同则按k值升序排序static bool cmp(const vector<int>&a, const vector<int>&b){if (a[0] b[0]) return a[1] < b[1]; // 如果身高相同&#…

注册自定义总线

1、在/sys/bus下注册一个自定义总线 #include<linux/module.h> #include<linux/init.h> #include<linux/kernel.h> #include<linux/kobject.h> #include<linux/slab.h> #include<linux/sysfs.h> #include<linux/device.h> #include…

【Linux】1w详解如何实现一个简单的shell

目录 实现思路 1. 交互 获取命令行 2. 子串分割 解析命令行 3. 指令的判断 内建命令 4. 普通命令的执行 补充&#xff1a;vim 文本替换 整体代码 重点思考 1.getenv和putenv是什么意思 2.代码extern char **environ; 3.内建命令是什么 4.lastcode WEXITSTATUS(sta…

Java-final关键字详解

Java-final关键字详解 一、引言 二、什么是 final 关键字&#xff1f; 三、final 变量 final 局部变量 final 实例变量 final 静态变量 四、final 方法 五、final 类 六、final 关键字的实际应用 1. 定义常量 2. 防止方法被重写 3. 创建不可变类 4. 优化性能 七、…

GitHub网页打开慢的解决办法

有时候看资料絮叨github网页打不开&#xff0c;经百度后&#xff0c;发下下面的方法有效。 1&#xff09;获取github官网ip 我们首先要获取github官网的ip地址&#xff0c;方法就是打开cmd&#xff0c;然后ping 找到github的地址&#xff1a;20.205.243.166 2&#xff09;配…