YOLOv10改进 | 主干/Backbone篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv10

news2025/1/19 20:19:15

 一、本文介绍

本文给大家带来利用RT-DETR模型主干HGNet去替换YOLOv10的主干,RT-DETR是今年由百度推出的第一款实时的ViT模型,其在实时检测的领域上号称是打败了YOLO系列,其利用两个主干一个是HGNet一个是ResNet,其中HGNet就是我们今天来讲解的网络结构模型,这个网络结构目前还没有推出论文,所以其理论知识在网络上也是非常的少,我也是根据网络结构图进行了分析(精度mAP提高0.05)

  专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 


目录

 一、本文介绍

二、HGNetV2原理讲解

三、HGNetV2的代码

四、手把手教你添加HGNetV2 

4. 1 HGNetV2-l的yaml文件(此为对比试验版本)

4.2 HGNetV2-x的yaml文件

五、运行成功记录

六、本文总结


二、HGNetV2原理讲解

 

本文论文地址:RT-DETR论文地址

本文代码来源:HGNetV2的代码来源


PP-HGNet 骨干网络的整体结构如下: 

其中,PP-HGNet是由多个HG-Block组成,HG-Block的细节如下:

上面的图表是PP-HGNet神经网络架构的概览,下面我会对其中的每一个模块进行分析:

1. Stem层:这是网络的初始预处理层,通常包含卷积层,开始从原始输入数据中提取特征。

2. HG(层次图)块:这些块是网络的核心组件,设计用于以层次化的方式处理数据。每个HG块可能处理数据的不同抽象层次,允许网络从低级和高级特征中学习。

3. LDS(可学习的下采样)层:位于HG块之间的这些层可能执行下采样操作,减少特征图的空间维度,减少计算负载并可能增加后续层的感受野。

4. GAP(全局平均池化):在最终分类之前,使用GAP层将特征图的空间维度减少到每个特征图一个向量,有助于提高网络对输入数据空间变换的鲁棒性。

5. 最终的卷积和全连接(FC)层:网络以一系列执行最终分类任务的层结束。这通常涉及一个卷积层(有时称为1x1卷积)来组合特征,然后是将这些特征映射到所需输出类别数量的全连接层。 

这种架构的主要思想是利用层次化的方法来提取特征,其中复杂的模式可以在不同的规模和抽象层次上学习,提高网络处理复杂图像数据的能力。

这种分层和高效的处理对于图像分类等复杂任务非常有利,在这些任务中,精确预测至关重要的是在不同规模上识别复杂的模式和特征。图表还显示了HG块的扩展视图,包括多个不同滤波器大小的卷积层,以捕获多样化的特征,然后通过一个元素级相加或连接的操作(由+符号表示)在数据传递到下一层之前。


三、HGNetV2的代码

需要注意的是HGNetV2这个版本的所需组件已经集成在YOLOv8的仓库了,所以我们无需做任何的代码层面的改动,只需要设计yaml文件来配合Neck部分融合特征即可了,但是我还是把代码放在这里,供有兴趣的读者看一下,也和上面的结构进行一个对照。主要的三个结构HGStem,HGBlock,DWConv。

class HGStem(nn.Module):
    """
    StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2):
        """Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling."""
        super().__init__()
        self.stem1 = Conv(c1, cm, 3, 2)
        self.stem2a = Conv(cm, cm // 2, 2, 1, 0)
        self.stem2b = Conv(cm // 2, cm, 2, 1, 0)
        self.stem3 = Conv(cm * 2, cm, 3, 2)
        self.stem4 = Conv(cm, c2, 1, 1)
        self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)

    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        x = self.stem1(x)
        x = F.pad(x, [0, 1, 0, 1])
        x2 = self.stem2a(x)
        x2 = F.pad(x2, [0, 1, 0, 1])
        x2 = self.stem2b(x2)
        x1 = self.pool(x)
        x = torch.cat([x1, x2], dim=1)
        x = self.stem3(x)
        x = self.stem4(x)
        return x


class HGBlock(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=True):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2

    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.ec(self.sc(torch.cat(y, 1)))
        return y + x if self.add else y



def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))



class DWConv(Conv):
    """Depth-wise convolution."""

    def __init__(self, c1, c2, k=1, s=1, d=1, act=True):  # ch_in, ch_out, kernel, stride, dilation, activation
        """Initialize Depth-wise convolution with given parameters."""
        super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)



四、手把手教你添加HGNetV2 

这里不需要改动什么,如果你的版本是老版本的,没有集成RT-DETR的版本(大部分都集成了已),那么大家可以下载一个新版本可以参考其中的怎么改,我这里就不在描述,否则拉下某一步在导致大家报错。


4. 1 HGNetV2-l的yaml文件(此为对比试验版本)

此版本的信息为:YOLOv10n-HGNet-l summary: 445 layers, 21002054 parameters, 21002038 gradients, 90.5 GFLOPs

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]]  # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]]  # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]]  # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]]   # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]]  # 4-P3/16
  - [-1, 6, HGBlock, [192, 1024, 5, True, False]]  # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]  # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]]  # 8-P4/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]]  # stage 4

  - [-1, 1, SPPF, [1024, 5]] # 10
  - [-1, 1, PSA, [1024]] # 11

# YOLOv10.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]] # 12
  - [[-1, 7], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 14

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 3], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 17 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 14], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 20 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 11], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 23 (P5/32-large)

  - [[17, 20, 23], 1, v10Detect, [nc]] # Detect(P3, P4, P5)


4.2 HGNetV2-x的yaml文件

此版本的信息为:YOLOv10n-HGNet-x summary: 531 layers, 24673702 parameters, 24673686 gradients, 67.3 GFLOPs

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 64]]  # 0-P2/4
  - [-1, 6, HGBlock, [64, 128, 3]]  # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]]  # 2-P3/8
  - [-1, 6, HGBlock, [128, 512, 3]]
  - [-1, 6, HGBlock, [128, 512, 3, False, True]]   # 4-stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]]  # 5-P3/16
  - [-1, 6, HGBlock, [256, 1024, 5, True, False]]  # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock, [256, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [256, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [256, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [256, 1024, 5, True, True]]  # 10-stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]]  # 11-P4/32
  - [-1, 6, HGBlock, [512, 2048, 5, True, False]]
  - [-1, 6, HGBlock, [512, 2048, 5, True, True]]  # 13-stage 4

  - [-1, 1, SPPF, [1024, 5]] # 14
  - [-1, 1, PSA, [1024]] # 15

# YOLOv10.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 10], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 18

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 21 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 18], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 24 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 15], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 27 (P5/32-large)

  - [[21, 24, 27], 1, v10Detect, [nc]] # Detect(P3, P4, P5)


五、运行成功记录

5.1 运行记录


5.2 训练代码 

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
 
if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/v8/yolov8-C2f-FasterBlock.yaml')
    # model.load('yolov8n.pt') # loading pretrain weights
    model.train(data=r'替换数据集yaml文件地址',
                # 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, pose
                cache=False,
                imgsz=640,
                epochs=150,
                single_cls=False,  # 是否是单类别检测
                batch=4,
                close_mosaic=10,
                workers=0,
                device='0',
                optimizer='SGD', # using SGD
                # resume='', # 如过想续训就设置last.pt的地址
                amp=False,  # 如果出现训练损失为Nan可以关闭amp
                project='runs/train',
                name='exp',
                )


六、本文总结

 到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv10改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1919927.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

会声会影分割音频怎么不能用 会声会影分割音频方法 会声会影视频制作教程 会声会影下载免费中文版2023

将素材中的音频分割出来,对声音部分进行单独编辑,是剪辑过程中的常用操作。会声会影视频剪辑软件在分割音频后,还可以对声音素材进行混音编辑、音频调节、添加音频滤镜等操作。有关会声会影分割音频怎么不能用,会声会影分割音频方…

加密软件|让数据传输更安全

加密软件在当今数字化时代扮演着至关重要的角色,它们通过先进的加密算法和技术,确保数据在存储、传输和分享过程中的安全性,从而保护个人隐私和企业机密。一、加密软件的基本作用数据加密:加密软件通过应用复杂的加密算法&#xf…

回归树模型

目录 一、回归树模型vs决策树模型:二、回归树模型的叶结点:三、如何决定每个非叶结点上的特征类型: 本文只介绍回归树模型与决策树模型的区别。如需了解完整的理论,请看链接:决策树模型笔记 一、回归树模型vs决策树模…

欣奇随机美图源码

欣赏养眼美图让人心情愉悦 新增正能量进站引导首页 上传文件解压即可用有手就行 美图输出接口自判断版 http://mt.xqia.net/api.php http://mt.xqia.net/api.php?typejson 源码下载:https://download.csdn.net/download/m0_66047725/89520368 更多资源下载&…

Kotlin MultiPlatform(KMP)

Kotlin MultiPlatform 1.KMP 是什么 Kotlin Multiplatform 是一个工具,它让我们用同一种编程语言(Kotlin)写代码,这些代码可以同时在不同的设备上运行,比如手机、电脑和网页。这样做可以节省时间,因为你不…

昇思25天学习打卡营第23天|K近邻算法实现红酒聚类

学AI还能赢奖品?每天30分钟,25天打通AI任督二脉 (qq.com) K近邻算法实现红酒聚类 本实验主要介绍使用MindSpore在部分wine数据集上进行KNN实验。 1、实验目的 了解KNN的基本概念;了解如何使用MindSpore进行KNN实验。 2、K近邻算法原理介绍…

液晶电子看板助力工厂打造车间精益管理数字化

在当今竞争激烈的市场环境下,企业追求生产智能化已成为提升竞争力的关键。要实现这一目标,生产现场设备联网进行数据采集是首要且基础的步骤。工业生产设备作为核心要素,其产生的各类数据与产品质量及企业运营效率息息相关。 在这样的背景下&…

自然语言处理基本概念

自然语言处理基本概念 所有学习循环神经网络的人都是看这一篇博客长大的: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ import jieba import torch from torch import nns1 "我吃饭了!" s2 "今天天气很好&#xff01…

加减计数器

目录 描述 输入描述: 输出描述: 参考代码 描述 请编写一个十进制计数器模块,当mode信号为1,计数器输出信号递增,当mode信号为0,计数器输出信号递减。每次到达0,给出指示信号zero。 模块的接…

【鸿蒙学习笔记】使用httpRequest进行HTTP数据请求

官方文档:网络管理开发概述 目录标题 访问淘宝公开接口(测试数据)第1步:module.json5 配置网络授权第2步:源码第3步:启动模拟器第4步:启动entry第5步:操作 访问淘宝公开接口&#x…

区分modbus tcp和tcp/ip

Modbus 对某些人来说,这听起来可能很复杂,也很令人费解,但是一旦你了解了它的工作原理,那就是一个特别简单的过程。MODBUS 这是一种请求和响应协议。MODBUS 主站将发起请求,从站将响应错误或请求信息。这就是 modbus 简…

海外媒体软文发稿:南非新闻通稿宣发,谷歌新闻收录

南非媒体介绍 南非作为非洲大陆最先进的经济体之一,拥有着丰富多样的媒体资源。在南非,各种类型的新闻报纸、杂志和网站充斥着市场。以下是一些南非主要媒体的 大舍传媒 大舍传媒是专注南非最有影响力的发稿平台之一,其新闻报道覆盖了南非…

【深度学习】基于深度学习的模式识别基础

一 模式识别基础 “模式”指的是数据中具有某些相似特征或属性的事物或事件的集合。具体来说,模式可以是以下几种形式: 视觉模式 在图像或视频中,模式可以是某种形状、颜色组合或纹理。例如,人脸、文字字符、手写数字等都可以视…

【鸿蒙学习笔记】通过用户首选项实现数据持久化

官方文档:通过用户首选项实现数据持久化 目录标题 使用场景第1步:源码第2步:启动模拟器第3步:启动entry第6步:操作样例2 使用场景 Preferences会将该数据缓存在内存中,当用户读取的时候,能够快…

千呼新零售2.0-OCR图像识别采购单视频介绍

千呼新零售2.0系统是零售行业连锁店一体化收银系统,包括线下收银线上商城连锁店管理ERP管理商品管理供应商管理会员营销等功能为一体,线上线下数据全部打通。 适用于商超、便利店、水果、生鲜、母婴、服装、零食、百货、宠物等连锁店使用。 详细介绍请…

29.PLL(锁相环)-IP核的调用

(1)PLL IP核的简介: Phase Locked Loop,即锁相环,是最常用的IP核之一,其性能强大,可以对输入到FPGA的时钟信号进行任意分频、倍频、相位调整、占空比调整,从而输出一个期望时钟。锁相…

如何从gitlab删除仓库

嗨,我是兰若姐姐。今天发现gitlab上有些仓库的代码没有用,是个多余的仓库,想要删掉,经过一番操作之后,成功的删除了,git上没有 多余的仓库,看着干净舒服很多,现在把删除的过程分享出…

Node.js如何在Windows安装?

文章目录 主要特点:使用场景:安装方法验证是否安装成功 Node.js 是一个开源、跨平台的JavaScript运行环境,由Ryan Dahl于2009年创建。它允许开发者在服务器端运行JavaScript代码。Node.js 基于Chrome V8 JavaScript引擎构建,其设计…

各地户外分散视频监控点位,如何实现远程集中实时监看?

公司业务涉及视频监控项目承包搭建,此前某个项目需求是为某林业公司提供视频监控解决方案,需要实现各地视频摄像头的集中实时监看,以防止国家储备林的盗砍、盗伐行为。 公司原计划采用运营商专线连接各个视频监控点位,实现远程视…

前后端通信 —— HTTP/HTTPS

目录 一、HTTP/HTTPS 简介 1、HTTP 2、HTTPS 二、HTTP 工作过程 三、HTTP 消息 1、HTTP消息结构 2、HTTP消息示例 四、HTTP 方法(常用) 1、GET 2、POST 3、PUT 4、DELETE 5、GET与POST对比 五、HTTP 状态码(常用) …