Python 核心编程

news2025/1/23 21:17:20

Python 核心编程

  • 1. 数据类型
    • 1.1 整型 int
    • 1.2 浮点数 float
    • 1.3 布尔类型 bool
    • 1.4 字符串 str
    • 1.5 列表 list
    • 1.6 元组 tuple
    • 1.7 集合 set
    • 1.8 字典 dict
  • 2. 逻辑结构、文件操作
    • 2.1 分支结构和三元表达
    • 2.2 循环和遍历
    • 2.3 目录和路径
    • 2.4 文件操作
  • 3. 函数、类、异常处理
    • 3.1 函数
    • 3.2 类
    • 3.3 异常处理
  • 4. 包和模块、随机数
    • 4.1 包和模块
    • 4.2 随机数
  • 5. 生成器、高阶函数
    • 生成器
    • 高阶函数

1. 数据类型

1.1 整型 int

  • 没有长度限制
score = 95
type(score)
int
num = 888888888888888888888888888888888888888888888888888888888888888888888888888888
type(num)
int
num
888888888888888888888888888888888888888888888888888888888888888888888888888888
a = 4
b = 3
a + b
7
a - b
1
a * b
12
a / b
1.3333333333333333
a ** b
64
a ** (1 / b)
1.5874010519681994
import math
math.exp(3)
20.085536923187668
math.log(a)
1.3862943611198906
str(a)
'4'
c = int('5')
c
5
a > b
True
b > a
False
 a == b
False
a >= b
True
a <= b
False
a != b
True

1.2 浮点数 float

  • 浮点数是不精准存储
score = 82.11
type(score)
float
price = 5.55555555555555555555555555555555555555555555555555555555555
price
5.555555555555555
type(price)
float
distance = 1.5e-4
distance
0.00015
a = 1.5
b = 2.7
a + b
4.2
a - b
-1.2000000000000002
a * b
4.050000000000001
a / b
0.5555555555555555
import math
a = 3.5
a ** 2
12.25
a ** (1/2)
1.8708286933869707
a = 5.6
math.exp(a)
270.42640742615254
math.log(a)
1.7227665977411035
math.log2(a)
2.4854268271702415
str(a)
'5.6'
c = float('2.3132')
c
2.3132
a = 3.23452
math.ceil(a)
4
math.floor(a)
3
int(a)
3
round(a,2)
3.23
a = 1-0.55
a
0.44999999999999996
a = 3.5
b = 6.43
a < b
True
a = 1 - 0.55
a == 0.45
False
# 浮点数的相等不能直接比较
math.fabs(a - 0.45) < 1e-6
True

1.3 布尔类型 bool

  • True 就是1 , False 就是0
True
True
False
False
result = True
3>2
True
1==2
False
True+1
2
2 ** True
2
1 / False
---------------------------------------------------------------------------

ZeroDivisionError                         Traceback (most recent call last)

Cell In[85], line 1
----> 1 1 / False


ZeroDivisionError: division by zero
True and True
True
True and False
False
True or False
True
not False
True
not True
False

1.4 字符串 str

  • 单引号/双引号/三单引号/三双引号
s1 = '人工智能'
s2 = "人工智能"
type(s1),type(s2)
(str, str)
s3='''这是一个多行字符串
我可以自由换行
'''
s3
'这是一个多行字符串\n我可以自由换行\n'
s4="""三双引号
一样可以灵活换行"""
s4
'三双引号\n一样可以灵活换行'
len(s4)
13
s4.__len__()
13
s="qwertyuiopezxcfvgbnhmpdsfkpisjfoid"
s[0]
'q'
s[10]
'e'
s[-1]
'd'
s[-2]
'i'
s[:3]
'qwe'
s[3:5]
'rt'
s[1:-1]
'wertyuiopezxcfvgbnhmpdsfkpisjfoi'
len(s)
34
#[start:stop:step]
s[1:-4:3]
'wtiecghdks'
for ele in s[5:-6:4]:
    print(ele)
y
p
c
b
p
k
s = "            erwreqw"
s.strip()
'erwreqw'
s = "   \t\n AI \t \n"
s
'   \t\n AI \t \n'
s.strip()
'AI'
s = "人工  \t智能"
s.strip()
'人工  \t智能'
s.replace("\t","").replace(" ","")
'人工智能'
s = "1,2,3,4,5,6  "
ls = s.strip().split(",")
ls
['1', '2', '3', '4', '5', '6']
s = ",".join(ls)
s
'1,2,3,4,5,6'
s = "Hello World"
s.lower()
'hello world'
s.upper()
'HELLO WORLD'
s1 = "AI "
s2 = "人工智能 "
s1+s2
'AI 人工智能 '
s = 3*s1+ 5* s2
s
'AI AI AI 人工智能 人工智能 人工智能 人工智能 人工智能 '
s.count("AI")
3
'人工' in s
True
'智能' not in s
False

1.5 列表 list

  • 元素有顺序,元素可以是任意类型,元素可以重复
ls = [1,2,3,4]
type(ls)
list
ls = list("abc")
ls
['a', 'b', 'c']
[1,2] == [2,1]
False
ls = [1,True,"asd",[1,2,3,4]]
ls
[1, True, 'asd', [1, 2, 3, 4]]
len(ls)
4
ls.__len__()
4
ls[0]
1
ls[:2]
[1, True]
ls[::2]
[1, 'asd']
ls[::-1]
[[1, 2, 3, 4], 'asd', True, 1]
for ele in ls:
    print(ele)
1
True
asd
[1, 2, 3, 4]
ls=[]
len(ls)
0
ls.insert(0,"test")
ls
['test']
ls.insert(0,"1")
ls
['1', 'test']
ls.insert(100,"2")
ls
['1', 'test', '2']
ls.insert(-100,123)
ls
[123, '1', 'test', '2']
ls.append([1,2,3])
ls
[123, '1', 'test', '2', [1, 2, 3]]
ls.extend("mech")
ls
[123, '1', 'test', '2', [1, 2, 3], 'm', 'e', 'c', 'h']
ls.remove("1")
ls.remove([1,2,3])
ls
[123, 'test', '2', 'm', 'e', 'c', 'h']
ls.remove(321)
---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

Cell In[217], line 1
----> 1 ls.remove(321)


ValueError: list.remove(x): x not in list
ls.pop()
'h'
ls
[123, 'test', '2', 'm', 'e', 'c']
ls.pop(10)
---------------------------------------------------------------------------

IndexError                                Traceback (most recent call last)

Cell In[220], line 1
----> 1 ls.pop(10)


IndexError: pop index out of range
ls.pop(-3)
'm'
ls
[123, 'test', '2', 'e', 'c']
ls[0] = 321
ls
[321, 'test', '2', 'e', 'c']
ls[-3:] = [1.1,2.2]
ls
[321, 'test', 1.1, 2.2]
ls.count(1)
0
321 in ls
True

1.6 元组 tuple

  • 元素有顺序,可以是任意类型,不可修改
t1 = ()
type(t1)
tuple
t1
()
t2 = ("qwe")
t2
'qwe'
type(t2)
str
t3 = ("12",)
t3
('12',)
type(t3)
tuple
t4=(1,2,True,"ADSAS")
t4
(1, 2, True, 'ADSAS')
t5 = tuple("abd")
t5
('a', 'b', 'd')
t6=tuple([1,2,3,4,5,6])
t6
(1, 2, 3, 4, 5, 6)
# 元素不能修改
t6[3]=0
---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

Cell In[248], line 2
      1 # 元素不能修改
----> 2 t6[3]=0


TypeError: 'tuple' object does not support item assignment
t1 = tuple("abc")
t1
('a', 'b', 'c')
len(t1)
3
t1.__len__()
3
t1[0]
'a'
t1[-1]
'c'
t1[1::-1]
('b', 'a')
# 省略括号和结构赋值
t1 = (1,4.3)
t2 = 1,4.3
t1==t2
True
p1,p2 = t2
p1,p2
(1, 4.3)
p1
1
p2
4.3
p1,p2,p3 = t2
---------------------------------------------------------------------------

ValueError                                Traceback (most recent call last)

Cell In[265], line 1
----> 1 p1,p2,p3 = t2


ValueError: not enough values to unpack (expected 3, got 2)
# 快速交换多个变量的值
A = 4
B = 5
A,B=B,A
A
5
B
4
ls = (1,2,3,True,1,3,4,2,12)
ls.count(1)
3
ls.count(True)
3
True in ls
True
False in ls
False
# tuple 元素不能修改吗?
t2 = (1,2,3)
t2[1]=3
---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

Cell In[279], line 1
----> 1 t2[1]=3


TypeError: 'tuple' object does not support item assignment
t3=(1,2,[4,5,6])
# 列表是可变元素,值变了,但地址没变
t3[-1].append("ABD")
t3
(1, 2, [4, 5, 6, 'ABD'])

1.7 集合 set

  • 元素的无序性/确定性/唯一性
s1 = {}
s1
{}
type(s1)
dict
t2 = set()
t2
set()
type(t2)
set
t3={1}
t3
{1}
t4={1,2,3,4,5,6,7}
t4
{1, 2, 3, 4, 5, 6, 7}
t5=set("abscs")
t5
{'a', 'b', 'c', 's'}
t6=set([1,2,3,4])
t6
{1, 2, 3, 4}
t7 = {1,1,1,1,2,3,4}
t7
{1, 2, 3, 4}
# 列表是可变的,不能作为集合的元素
t8 = {[1,2,3],True,"absd"}
---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

Cell In[301], line 2
      1 # 列表是可变的,不能作为集合的元素
----> 2 t8 = {[1,2,3],True,"absd"}


TypeError: unhashable type: 'list'
s = set("asdfdwsf")
len(s)
5
s.__len__()
5
s.add(True)
s
{True, 'a', 'd', 'f', 's', 'w'}
s.add('s')
s
{True, 'a', 'd', 'f', 's', 'w'}
s.remove('a')
s
{True, 'd', 'f', 's', 'w'}
s.remove('ffff')
---------------------------------------------------------------------------

KeyError                                  Traceback (most recent call last)

Cell In[313], line 1
----> 1 s.remove('ffff')


KeyError: 'ffff'
# 随机删除
s.pop()
'd'
s
{'s', 'w'}
a = {1,2,3,4,5,6,7}
b = {4,5,6,7,8,9}
a.intersection(b)
{4, 5, 6, 7}
b.intersection(a)
{4, 5, 6, 7}
a.union(b)
{1, 2, 3, 4, 5, 6, 7, 8, 9}
b.union(a)
{1, 2, 3, 4, 5, 6, 7, 8, 9}
1 in a
True
10 in b
False

1.8 字典 dict

  • 元素成对出现,元素五顺序,key不可变,不重复,value无要求
d1 = {}
d1
{}
type(d1)
dict
len(d1)
0
d2 = {"name":"Tom"}
d2
{'name': 'Tom'}
d3 = {'name': 'Tom','age':12}
d3
{'name': 'Tom', 'age': 12}
len(d3)
2
# 可变类型不可以做key
# 可变类型: list/set/dict
# 不可变类型: int/float/bool/str/tuple*
d4 = {[1,2,3]:12}
---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

Cell In[339], line 2
      1 # 可变类型不可以做key
----> 2 d4 = {[1,2,3]:12}


TypeError: unhashable type: 'list'
d5 = dict(a=1,b=2,c=3)
d5
{'a': 1, 'b': 2, 'c': 3}
len(d5)
3
d5.__len__()
3
d6 = dict(name='Tom',age=22,school='北京大学')
d6
{'name': 'Tom', 'age': 22, 'school': '北京大学'}
d6["score"]=87
d6
{'name': 'Tom', 'age': 22, 'school': '北京大学', 'score': 87}
# 有则改之,无则追加
d2["score"] = 98
d2
{'name': 'Tom', 'score': 98}
d2["score"]
98
# 读取不存在的key会报错
d["asd"]
---------------------------------------------------------------------------

NameError                                 Traceback (most recent call last)

Cell In[364], line 2
      1 # 读取不存在的key会报错
----> 2 d["asd"]


NameError: name 'd' is not defined
# 使用get读取更加安全
d6.get("abc",0)
0
d6
{'name': 'Tom', 'age': 22, 'school': '北京大学', 'score': 87}
d6.pop('name')
'Tom'
d6
{'age': 22, 'school': '北京大学', 'score': 87}
d.pop('age1')
---------------------------------------------------------------------------

NameError                                 Traceback (most recent call last)

Cell In[371], line 1
----> 1 d.pop('age1')


NameError: name 'd' is not defined
d6.keys()
dict_keys(['age', 'school', 'score'])
d6.values()
dict_values([22, '北京大学', 87])
d6.items()
dict_items([('age', 22), ('school', '北京大学'), ('score', 87)])
# 默认遍历key
for ele in d2:
    print(ele)
name
score
# 遍历key
for key in d6.keys():
    print(key)
age
school
score
# 遍历value
for value in d6.values():
    print(value)
22
北京大学
87
# 遍历键值对
for key,value in d6.items():
    print(key,value)
age 22
school 北京大学
score 87
'age' in d6
True
'age1' in d6
False

2. 逻辑结构、文件操作

2.1 分支结构和三元表达

if(1<2):
    print("1<2")
1<2
age = 25
if age >= 18:
    print("成年人")
else:
    print("未成年")
成年人
score= 89

if score >=90:
    print("优秀")
elif score >= 75:
    print("良好")
elif score >= 60:
    print("及格")
else:
    print("不及格")
良好
# 三元表达

age = 3

True if age >= 18 else False
False
"成年人" if age >=18 else "未成年"
'未成年'
"成年人" if age >=18 else age
3

2.2 循环和遍历

num = 1
while True:
    if num < 10:
        num+=1
        print(num)
    else:
        break
2
3
4
5
6
7
8
9
10
for _ in range(10):
    print("Hello,Python!!!")
Hello,Python!!!
Hello,Python!!!
Hello,Python!!!
Hello,Python!!!
Hello,Python!!!
Hello,Python!!!
Hello,Python!!!
Hello,Python!!!
Hello,Python!!!
Hello,Python!!!
ls = [1,2,3,4,5,"Hello",False]
for ele in ls:
    print(ele)
1
2
3
4
5
Hello
False
s = "asdfg"
for ele in s:
    print(ele)
a
s
d
f
g

2.3 目录和路径

import os
# 路径是否存在(文件夹或文件)
os.path.exists(path="./abc")
True
# 路径拼接
os.path.join(".","abc","ddd")
'.\\abc\\ddd'
# 创建目录
save_path = "./abc/saved_weight"

# 如果不存在就创建
if not os.path.exists(path=save_path):
    os.makedirs(save_path)
# 删除文件
if os.path.exists(path="ddd.ddd"):
    os.remove()
# 删除目录
save_path = "./abc/saves_weights"
if os.path.exists(path=save_path):
    print("存在")
    os.removedirs(name=save_path)
# 遍历一个目录
root = "./"
for ele in os.listdir(root):
    if os.path.isfile(ele):
        print(ele,"文件")
    elif os.path.isdir(ele):
        print(ele,"目录")
.ipynb_checkpoints 目录
12.csv 文件
1234.txt 文件
abc 目录
P1_数据类型.ipynb 文件
P2_逻辑结构及文件操作.ipynb 文件
poem.txt 文件
saved_weight 目录

2.4 文件操作

# 打开、增删改查、关闭
f = open(file="./1234.txt",mode="r",encoding="utf8")
f.read()
'锄禾日当午\n汗滴禾下土'
f.read()
''
f.close()
# 更加优雅的写法
with open(file="./1234.txt",mode="r",encoding="utf8") as f:
    while True:
        line = f.readline().strip()
        if line:
            print(line)
        else:
            break
锄禾日当午
汗滴禾下土
# 写入:如果文件不存在则新建,如果存在则清空文件内容
with open(file="poem.txt",mode="w",encoding="utf8") as f:
        f.write("举头望明月\n低头思故乡\n")
# 追加内容
with open(file="poem.txt",mode="a",encoding="utf8") as f:
        f.write("举头望明月\n低头思故乡\n")

3. 函数、类、异常处理

3.1 函数

  • 位置参数
  • 默认参数
  • 可变参数
  • 匿名函数
# 定义参数

def fun():
    pass
# 调用
fun()
callable(fun)
True
# 位置参数

def add(a,b):
    return a+b
add(1,2)
3
# 默认参数

def area(r,pi=3.1415926):
    return r*r*pi
area(r=3,pi=3.14)
28.26
# 可变参数

def add_num(*args):
    s = 0
    for ele in args:
        s += ele
    return s
add_num()
0
add_num(1)
1
add_num(1,2,3,4,5)
15
# 匿名函数
fn = lambda x: x ** 2
fn(3)
9
(lambda x,y:x+y)(1,2)
3

3.2 类

  • 封装
  • 继承
  • 多态
class Car(object):
    def __init__(self,color="Black",brand="BYD",price=50):
        '''
            自定属性
        '''
        self.color = color
        self.brand = brand
        self.price = price
    def info(self):
        '''
            自定义方法
        '''
        print(self.color,self.brand,self.price)
    def __repr__(self):
        '''
            重载父类的方法
        '''
        return 'Car'
car1 = Car(color="Blue")
car1
Car
print(car1.color)
Blue
car1.info()
Blue BYD 50
# 继承
car1.__repr__()
'Car'
o = object()
o.__repr__()
'<object object at 0x0000020EBEBE4ED0>'
# 多态
car1.__repr__()
'Car'

3.3 异常处理

  • 异常基类 Exception
  • 接收异常 try except else finally
  • 抛出异常 raise
def divide(a, b):
    return a / b
divide(1,2)
0.5
divide(2,0)
---------------------------------------------------------------------------

ZeroDivisionError                         Traceback (most recent call last)

Cell In[13], line 1
----> 1 divide(2,0)


Cell In[11], line 2, in divide(a, b)
      1 def divide(a, b):
----> 2     return a / b


ZeroDivisionError: division by zero
"""
    异常处理
        - 守株待兔的操作
        - 如果没有发生异常:不做任何额外处理
        - 如果发生了异常,引导程序做出合理化的处理
"""
a = 3
b = 0
try:
    result = divide(a,b)
    print(result)
except Exception as e:
    print(e)
else:
    print("没有发生错误")
finally:
    print("不管是否发生错误,我都会执行")

print("这里依然可以执行")
division by zero
不管是否发生错误,我都会执行
这里依然可以执行
# 抛出异常

a = 2
b = 3

def divide(a, b):
    if isinstance(a, int) and isinstance(b, int) and b != 0:
        return a / b
    else:
        raise Exception("参数错误")
divide(2,1)
2.0
divide(1,0.3)
---------------------------------------------------------------------------

Exception                                 Traceback (most recent call last)

Cell In[23], line 1
----> 1 divide(1,0.3)


Cell In[21], line 10, in divide(a, b)
      8     return a / b
      9 else:
---> 10     raise Exception("参数错误")


Exception: 参数错误

4. 包和模块、随机数

4.1 包和模块

  • 包和模块是代码组织的一种方式,包就是一个文件夹,模块就是一个源码文件
  • 避免重复造轮子,利用前人写好的包和模块
  • 托管平台:pip 和 conda 管理工具
import numpy as np
np.__version__
'1.23.5'
np.e
2.718281828459045
import os
os.path.exists("./")
True
from matplotlib import pyplot as plt
  • 定义自己的模块
  • 在项目文件夹中新建一个文件夹名为 utils ,在里面新建一个 math.py文件,然后编辑函数
    在这里插入图片描述
from utils import math
math.add(3,23)
26
math.sub(43,1)
42

4.2 随机数

- 概率论中随机试验产生的结果
- 数据科学中随机数很重要
import random
# 均匀分布
# 按照均匀分布生成一个随机数
random.uniform(0,100)
4.646385375119754
random.randint(0,100)
67
# 高斯分布
random.gauss(mu=0,sigma=1)
-2.9510713969400872
# 洗牌操作
x = [1,2,3,4,5,6,7,8,9,0]
print(x)
random.shuffle(x)
print(x)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 0]
[0, 6, 1, 4, 5, 7, 3, 9, 8, 2]
# 随机抽取
x = [1,2,3,4,5,6,7,8,9,0]
result = random.choice(x)
print(result)
9
ls = random.sample(x,3)
print(ls)
[5, 9, 3]
# 固定随机数,方便复现:种子固定了,随机规则就产生了,
random.seed(0)
x = [1,2,3,4,5,6,7,8,9,0]
result = random.sample(x,2)
print(result)
[7, 0]

5. 生成器、高阶函数

生成器

- 当数据集很大时,我们很难一次性将所有数据加载到内存中,而是按需加载,这时候就要用到生成器
- 模型训练时,数据经常会打包成生成器
- yield 和 return
- 列表生成器
- 打包数据集
# return 返回并跳出函数
def get_data():
    ls = [0,1,2,3,4,5,6,7,8,9]
    for ele in ls:
        return ele
get_data()
0
# yield 构建生成器
def get_data():
    ls = [0,1,2,3,4,5,6,7,8,9]
    for ele in ls:
        yield ele
gen = get_data()
for ele in gen:
    print(ele)
0
1
2
3
4
5
6
7
8
9
ls = list(range(10))
ls
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
# 列表解析式 : for循环 + if判断
ls1 = [ele for ele in ls if ele % 2 == 1]
ls1
[1, 3, 5, 7, 9]
# 这样也可以构建生成器
gen1 = (ele for ele in ls if ele % 2 == 1)
for ele in gen1:
    print (ele)
1
3
5
7
9
# 通过生成器来读取数据集

def get_dataset():
    with open(file="dataset.csv",mode="r",encoding="utf8") as f:
        line = f.readline()
        while True:
            line = f.readline()
            if line:
                yield line
            else:
                break
gen = get_dataset()
# 生成器是一次性的,从头读到尾之后,再想重新读就又要新的生成器了
next(gen)
'1.70,70,23,89\n'
for ele in gen:
    print(ele)
1.67,71,23,79

1.75,72,22,84

1.74,73,23,86

1.79,74,21,56

高阶函数

- 把函数当做参数,自动化的实现底层遍历
- 数据科学中高阶函数很有用,可以极大提升效率
- map 映射
- reduce 聚合
- filter 过滤
- sorted 排序
  • map
ls = [0,1,2,3,4,5,6,7,8,9]

def add(ele):
    return ele + 0.5
ls1 = list(map(add,ls))
ls1
[0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5]
  • reduce
from functools import reduce
sum(ls)
45
def add(a,b):
    return a+b
reduce(add,ls)
45
reduce(lambda x, y: x * y, ls)
0
  • filter
list(filter(lambda x : True if x % 2 == 0 else False, ls))
[0, 2, 4, 6, 8]
  • sorted
sorted(ls, reverse = True)
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
ls = [0,1,2,3,4,5,6,7,8,9]
ls.sort(reverse = True)
ls
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
ls2 = [(2,4),(1,6),(5,1),(3,8)]
sorted(ls2, key=lambda x:x[0], reverse=True)
[(5, 1), (3, 8), (2, 4), (1, 6)]
sorted(ls2, key=lambda x:x[1],reverse=False)
[(5, 1), (2, 4), (1, 6), (3, 8)]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1919307.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

int类型变量表示范围的计算原理

文章目录 1. 了解2. 为什么通常情况下int类型整数的取值范围是-2147483648 ~ 21474836473. int类型究竟占几个字节4. 推荐 1. 了解 通常情况下int类型变量占4个字节&#xff0c;1个字节有8位&#xff0c;每位都有0和1两种状态&#xff0c;所以int类型变量一共可以表示 2^32 种状…

p15 p16 c语言实现三子棋

具体的实现代码 game.c #include "game.h"void InitBoard(char board[ROW][COL], int row, int col) {int i 0;int j 0;for (i 0; i < row; i) {for (j 0; j < col; j) {board[i][j] ;}} }void DisplayBoard(char board[ROW][COL], int row, int col) …

C++:组合和继承的区别

组合介绍以及与继承对比 什么是组合 (1)composition&#xff0c;组合&#xff0c;就是在一个class内使用其他多个class的对象作为成员 (2)用class tree做案例讲解 (3)组合也是一种代码复用方法&#xff0c;本质也是结构体包含 #include <iostream> #include <vector…

达梦数据库中的线程和进程

达梦数据库中的线程和进程 在达梦数据库中&#xff0c;线程和进程的概念与操作系统中的定义类似&#xff0c;但有一些特定的实现细节和用途。以下是达梦数据库中线程和进程的一些关键点&#xff1a; 进程&#xff08;Process&#xff09;&#xff1a; 在达梦数据库中&#x…

在亚马逊云科技AWS利用IaC(基础设施即代码)设计和搭建云原生架构(附免费学习教程和证书)

今天小李哥为大家介绍的是利用IaC(基础设施即代码)设计和搭建亚马逊云科技AWS云原生架构。本篇文章将会介绍如何在亚马逊云科技上搭建云原生Serverless服务&#xff0c;所使用的开发服务介绍&#xff0c;并展示搭建云原生架构的cdk代码。小李哥同时会给大家分享快速学习亚马逊云…

第一关:Linux基础知识

Linux基础知识目录 前言LinuxInternStudio 关卡1. InternStudio开发机介绍2. SSH及端口映射2.1 什么是SSH&#xff1f;2.2 如何使用SSH远程连接开发机&#xff1f;2.2.1 使用密码进行SSH远程连接2.2.2 配置SSH密钥进行SSH远程连接2.2.3 使用VScode进行SSH远程连接 2.3. 端口映射…

Linux 程序卡死的特殊处理

一、前言 Linux环境。 我们在日常编写的程序中&#xff0c;可能会出现一些细节问题&#xff0c;导致程序卡死&#xff0c;即程序没法正常运行&#xff0c;界面卡住&#xff0c;也不会闪退... 当这种问题出现在客户现场&#xff0c;那就是大问题了。。。 当我们暂时还无法排…

1、项目目录设计

文章目录 前言一、项目目录设计 前言 本项目我们将会完成一个Go项目开发框架&#xff0c;该项目不会包含具体的CRUD业务代码&#xff0c;而是从头搭建一个工作中实用的开发框架。让开发者能够熟悉整个项目的搭建流程&#xff0c;能够独立完成项目从0到1的搭建&#xff0c;而且…

【爬虫】解析爬取的数据

目录 一、正则表达式1、常用元字符2、量词3、Re模块4、爬取豆瓣电影 二、Xpath1、Xpath解析Ⅰ、节点选择Ⅱ、路径表达式Ⅲ、常用函数 2、爬取豆瓣电影 解析数据&#xff0c;除了前面的BeautifulSoup库&#xff0c;还有正则表达式和Xpath两种方法。 一、正则表达式 正则表达式…

Pandas数学函数大揭秘:让数据处理变得如此简单高效,轻松玩转数据分析新纪元!

1.导包 # 导包 import numpy as np import pandas as pd2.聚合函数 df pd.DataFrame(datanp.random.randint(0,100,size(5,3))) df01203550281552376231419335895434679917 # 列非空元素的数量 df.count()0 5 1 5 2 5 dtype: int64# 行非空元素的数量 df.count(ax…

tableau范围-线图与倾斜图绘制 - 14

范围-线图与倾斜图 1.范围-线图1.1 含义1.2 范围-线图1.2.1 折线图绘制1.2.2 设置计算字段1.2.3 添加详细信息1.2.4 添加参考线1.2.5 结果 2. 倾斜图2.1 含义2.2 倾斜图绘制2.2.1 数据导入2.2.2 创建计算字段2.2.3 排名编辑表计算2.2.4 显示标签2.2.5 标签格式设置2.2.6 修改排…

系统服务综合作业01

题目&#xff1a; 现有主机 node01 和 node02&#xff0c;完成如下需求&#xff1a; 1、在 node01 主机上提供 DNS 和 WEB 服务 2、dns 服务提供本实验所有主机名解析 3、web服务提供 www.rhce.com 虚拟主机 4、该虚拟主机的documentroot目录在 /nfs/rhce 目录 5、该目录由 no…

RK3568平台开发系列讲解(内存篇)Linux进程内存的消耗统计

🚀返回专栏总目录 文章目录 一、VSS(Virtual Set Size)二、RSS(Resident Set Size)三、PSS(Proportional Set Size)四、USS(Unique Set Size)五、其他工具Linux 提供了多种进程内存占用的度量指标, 它们反映了不同的内存使用特征: VSS 反映进程虚拟内存总需求, 包括未…

启航IT之旅:为新生绘制的学习路线图

随着七月的热浪悄悄席卷而来&#xff0c;各地高考成绩陆续放榜&#xff0c;对于刚迈过高考这座独木桥的你们&#xff0c;这不仅仅是一个故事的终章&#xff0c;更是另一段冒险的序曲。特别是那些心中有一团IT火焰燃烧的少年们&#xff0c;暑假的钟声已经敲响&#xff0c;是时候…

多目标螳螂搜索算法MOMSA求解无人机三维路径规划,可以自行修改障碍物位置(MATLAB代码)

无人机路径规划多目标优化求解是一个复杂的过程&#xff0c;涉及到多个目标的考量和优化算法的应用。以下是一些关键点和相关算法的概述&#xff1a; 1. **多目标优化策略**&#xff1a;在无人机路径规划中&#xff0c;需要同时考虑多个目标&#xff0c;如路径长度、安全性、飞…

初学SpringMVC之接收请求参数及数据回显

pom.xml 文件导入 lombok 的依赖 <dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId><version>1.18.34</version></dependency> Controller 表示这是一个控制器 RequestParam 表示从前端接收…

SD卡讲解

SD 卡 (Secure Digital Memory Card) 在我们生活中已经非常普遍了&#xff0c;控制器对 SD 卡进行读写通信 操作一般有两种通信接口可选&#xff0c;一种是 SPI 接口&#xff0c;另外一种就是 SDIO 接口。SDIO 全称是安全数 字输入/输出接口&#xff0c;多媒体卡 (MMC)、SD 卡、…

Elon Musk开源Grok

转载自&#xff1a;AILab基地 早在6天前&#xff0c;马斯克就发文称xAI将开源Grok 图片 13小时前&#xff0c;马斯克开源了旗下公司X的Grok训练模型&#xff0c;并喊话OpenAI&#xff0c;你名字里的Open到底在哪里 图片 下面是xai-org的GitHub开源地址[https://github.com/x…

HTTP-概述

概念 :Hyper Text Transfer Protocol&#xff0c;超文本传输协议&#xff0c;规定了浏览器和服务器之间数据传输的规则。 原始数据格式 特点 1. 基于TCP协议:面向连接&#xff0c;安全&#xff08;三次握手&#xff09; 2. 基于请求-响应模型的:一次请求对应一次响应&#xf…

无障碍全免费上手智能体:Autogen Studio结合Deepseek Coder打造一款AI旅游规划师

本文的唯一目的是通过打造一款AI旅游规划师&#xff0c;通俗易懂、深入浅出的讲清楚AI应用的大方向-智能体-的原理。 无需科学上网&#xff0c;无需付费API&#xff0c;无需编程能力&#xff0c;一小时即可部署、搭建一款复杂的、多代理交互的AI智能体-旅游规划师&#xff0c;…