线性代数|机器学习-P22逐步最小化一个函数

news2024/9/20 14:20:54

文章目录

  • 1. 概述
  • 2. 泰勒公式
  • 3. 雅可比矩阵
  • 4. 经典牛顿法
    • 4.1 经典牛顿法理论
    • 4.2 牛顿迭代法解求方程根
    • 4.3 牛顿迭代法解求方程根 Python
  • 5. 梯度下降和经典牛顿法
    • 5.1 线搜索方法
    • 5.2 经典牛顿法
  • 6. 凸优化问题
    • 6.1 约束问题
    • 6.1 凸集组合

Mit麻省理工教授视频如下:逐步最小化一个函数

1. 概述

主要讲的是无约束情况下的最小值问题。涉及到如下:

  • 矩阵求导
  • 泰勒公式,函数到向量的转换
  • 梯度下降
  • 牛顿法梯度下降

2. 泰勒公式

我们之前在高等数学中学过关于f(x)的泰勒展开如下:
定义: lim ⁡ x → a h k ( x ) = 0 \lim\limits_{x\to a}h_k(x)=0 xalimhk(x)=0
f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + ⋯ + f ( k ) ( a ) k ! ( x − a ) k + h k ( x ) ( x − a ) k \begin{equation} f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\cdots+\frac{f^{(k)}(a)}{k!}(x-a)^k+h_k(x)(x-a)^k \end{equation} f(x)=f(a)+f(a)(xa)+2!f′′(a)(xa)2++k!f(k)(a)(xa)k+hk(x)(xa)k

  • 那么我们只提取二次项, x + Δ x → x ; x → a x+\Delta x \rightarrow x;x\rightarrow a x+Δxx;xa 可得如下:
    f ( x + Δ x ) ≈ f ( x ) + f ′ ( x ) Δ x + f ′ ′ ( x ) 2 ! Δ x 2 \begin{equation} f(x+\Delta x)\approx f(x)+f'(x)\Delta x+\frac{f''(x)}{2!}\Delta x^2 \end{equation} f(x+Δx)f(x)+f(x)Δx+2!f′′(x)Δx2
  • 上面的公式中x为标量,现在我们需要用到向量 x
  • a , b a,b a,b均为1维列向量,S为对称矩阵时,我们可得得到如下:
    a T b = c , x T S x = d → c , d 均为标量 \begin{equation} a^Tb=c,x^TSx=d\rightarrow c,d均为标量 \end{equation} aTb=c,xTSx=dc,d均为标量
  • 定义如下:
    x = [ x 1 x 2 ⋯ x n ] T , f = [ f 1 f 2 ⋯ f n ] T \begin{equation} x=\begin{bmatrix}x_1&x_2&\cdots&x_n\end{bmatrix}^T,f=\begin{bmatrix}f_1&f_2&\cdots&f_n\end{bmatrix}^T \end{equation} x=[x1x2xn]T,f=[f1f2fn]T
    f ′ ( x ) = ∇ F = [ ∂ f ∂ x 1 ∂ f ∂ x 1 ⋯ ∂ f ∂ x n ] T → f ′ ( x ) Δ x = ( Δ x ) T ∇ F ( x ) \begin{equation} f'(x)=\nabla F=\begin{bmatrix}\frac{\partial f}{\partial x_1}&\frac{\partial f}{\partial x_1}&\cdots&\frac{\partial f}{\partial x_n}\end{bmatrix}^T \rightarrow f'(x)\Delta x=(\Delta x)^T \nabla F(x) \end{equation} f(x)=F=[x1fx1fxnf]Tf(x)Δx=(Δx)TF(x)
  • H j k H_{jk} Hjkhessian matrix具有对称性
    f ′ ′ ( x ) = H j k = ∂ 2 F ∂ x j ⋅ ∂ x k → f ′ ′ ( x ) 2 ! Δ x 2 = 1 2 ( Δ x ) T H j k ( Δ x ) \begin{equation} f''(x)=H_{jk}=\frac{\partial^2F}{\partial x_j\cdot \partial x_k}\rightarrow \frac{f''(x)}{2!}\Delta x^2=\frac{1}{2}(\Delta x)^T H_{jk}(\Delta x) \end{equation} f′′(x)=Hjk=xjxk2F2!f′′(x)Δx2=21(Δx)THjk(Δx)
  • 整理上述公式可得:
    F ( x + Δ x ) ≈ F ( x ) + ( Δ x ) T ∇ F ( x ) + 1 2 ( Δ x ) T H j k ( Δ x ) \begin{equation} F(x+\Delta x)\approx F(x)+(\Delta x)^T \nabla F(x)+\frac{1}{2}(\Delta x)^T H_{jk}(\Delta x) \end{equation} F(x+Δx)F(x)+(Δx)TF(x)+21(Δx)THjk(Δx)

3. 雅可比矩阵

假设有一个m维度向量函数 f ( x ) = [ f 1 ( x ) f 2 ( x ) ⋯ f m ( x ) ] T f(x)=\begin{bmatrix}f_1(x)&f_2(x)&\cdots f_m(x)\end{bmatrix}^T f(x)=[f1(x)f2(x)fm(x)]T[列向量],其中
x = [ x 1 x 2 ⋯ x n ] T x=\begin{bmatrix}x_1&x_2&\cdots&x_n\end{bmatrix}^T x=[x1x2xn]T是一个n维输入向量,雅可比矩阵J是一个 m × n m\times n m×n的矩阵,其元素由函数的偏导数组成:雅可比矩阵第i行第j列表示的是 f i ( x ) f_i(x) fi(x) x i x_i xi的偏导
J i j = ∂ f i ( x ) ∂ x j \begin{equation} J_{ij}=\frac{\partial f_i(x)}{\partial x_j} \end{equation} Jij=xjfi(x)

  • 本质上就是函数值 f i ( x ) f_i(x) fi(x) x i x_i xi的每个元素求导:

  • 第一步假设 f i ( x ) f_i(x) fi(x)是常数, ∂ f i ( x ) ∂ X \frac{\partial f_i(x)}{\partial X} Xfi(x)为分子布局,遵循标量不变,向量拉伸原则

  • XY拉伸术,分子布局,X横向拉,Y纵向拉,可得如下:
    ∂ f i ( x ) ∂ X = [ ∂ f i ( x ) ∂ x 1 ∂ f i ( x ) ∂ x 2 ⋯ ∂ f i ( x ) ∂ x n ] \begin{equation} \frac{\partial f_i(x)}{\partial X}= \begin{bmatrix} \frac{\partial f_i(x)}{\partial x_1}& \frac{\partial f_i(x)}{\partial x_2}& \cdots& \frac{\partial f_i(x)}{\partial x_n} \end{bmatrix} \end{equation} Xfi(x)=[x1fi(x)x2fi(x)xnfi(x)]

  • 第二步假设 f ( x ) f(x) f(x)为向量, ∂ f ( x ) ∂ X \frac{\partial f(x)}{\partial X} Xf(x)为分子布局,遵循标量不变,向量拉伸原则

  • XY拉伸术,分子布局,X横向拉,Y 纵向拉,可得如下:
    J = [ ∂ f 1 ( x ) ∂ x 1 ∂ f 1 ( x ) ∂ x 2 ⋯ ∂ f 1 ( x ) ∂ x n ∂ f 2 ( x ) ∂ x 1 ∂ f 2 ( x ) ∂ x 2 ⋯ ∂ f 2 ( x ) ∂ x n ⋮ ⋮ ⋯ ⋮   ∂ f m ( x ) ∂ x 1 ∂ f m ( x ) ∂ x 2 ⋯ ∂ f m ( x ) ∂ x n ] \begin{equation} \mathrm{J}= \begin{bmatrix} \frac{\partial f_1(x)}{\partial x_1}&\frac{\partial f_1(x)}{\partial x_2}&\cdots&\frac{\partial f_1(x)}{\partial x_n}\\\\ \frac{\partial f_2(x)}{\partial x_1}&\frac{\partial f_2(x)}{\partial x_2}&\cdots&\frac{\partial f_2(x)}{\partial x_n} \\\\ \vdots&\vdots&\cdots&\vdots\\\\\ \frac{\partial f_m(x)}{\partial x_1}&\frac{\partial f_m(x)}{\partial x_2}&\cdots& \frac{\partial f_m(x)}{\partial x_n} \end{bmatrix} \end{equation} J= x1f1(x)x1f2(x) x1fm(x)x2f1(x)x2f2(x)x2fm(x)xnf1(x)xnf2(x)xnfm(x)

  • 泰勒公式1阶展开可得:
    f ( x + Δ x ) = f ( x ) + f ′ ( x ) Δ x \begin{equation} f(x+\Delta x)=f(x)+f'(x)\Delta x \end{equation} f(x+Δx)=f(x)+f(x)Δx

  • 转换成雅可比矩阵可得:
    f ( x + Δ x ) = f ( x ) + J j k Δ x ; J j k = ∂ f j ( x ) ∂ x k \begin{equation} f(x+\Delta x)=f(x)+\mathrm{J}_{jk}\Delta x;\mathrm{J}_{jk}=\frac{\partial f_j(x)}{\partial x_k} \end{equation} f(x+Δx)=f(x)+JjkΔx;Jjk=xkfj(x)

4. 经典牛顿法

4.1 经典牛顿法理论

我们已经知道了函数的二阶泰勒展开表示如下:
F ( x + Δ x ) ≈ F ( x ) + ( Δ x ) T ∇ F ( x ) + 1 2 ( Δ x ) T H j k ( Δ x ) \begin{equation} F(x+\Delta x)\approx F(x)+(\Delta x)^T \nabla F(x)+\frac{1}{2}(\Delta x)^T H_{jk}(\Delta x) \end{equation} F(x+Δx)F(x)+(Δx)TF(x)+21(Δx)THjk(Δx)

  • 一般如果在 x ∗ x^* x处取得最小值,那么其导数为0;现在我们求导可得:
    d F ( x ) d Δ x = 0 ; ( Δ x ) T ∇ F ( x ) d Δ x = ∇ F ( x ) ; d 1 2 ( Δ x ) T H j k ( Δ x ) d Δ x = H j k Δ x ; \begin{equation} \frac{\mathrm{d}F(x)}{\mathrm{d}\Delta x}=0;\frac{(\Delta x)^T \nabla F(x)}{\mathrm{d}\Delta x}=\nabla F(x);\frac{\mathrm{d}\frac{1}{2}(\Delta x)^T H_{jk}(\Delta x)}{\mathrm{d}\Delta x}=H_{jk}\Delta x; \end{equation} dΔxdF(x)=0;dΔx(Δx)TF(x)=F(x);dΔxd21(Δx)THjk(Δx)=HjkΔx;
    d F ( x + Δ x ) d Δ x = 0 + ∇ F ( x ) + H j k Δ x = 0 \begin{equation} \frac{\mathrm{d}F(x+\Delta x)}{\mathrm{d}\Delta x}=0+\nabla F(x)+H_{jk}\Delta x=0 \end{equation} dΔxdF(x+Δx)=0+F(x)+HjkΔx=0
  • H j k = J j k H_{jk}=\mathrm{J}_{jk} Hjk=Jjk可逆时, Δ x = x k + 1 − x k \Delta x=x_{k+1}-x_k Δx=xk+1xk可得:
    − [ H j k ] − 1 ∇ F ( x ) = x k + 1 − x k → x k + 1 = x k − [ J j k ] − 1 ∇ F ( x ) \begin{equation} -[H_{jk}]^{-1}\nabla F(x)=x_{k+1}-x_k\rightarrow x_{k+1}=x_k-[\mathrm{J}_{jk}]^{-1}\nabla F(x) \end{equation} [Hjk]1F(x)=xk+1xkxk+1=xk[Jjk]1F(x)
  • 我们定义 ∇ F ( x ) = f ( x k ) \nabla F(x)=f(x_k) F(x)=f(xk), J j k = J x k \mathrm{J}_{jk}=\mathrm{J}_{x_k} Jjk=Jxk
    x k + 1 = x k − [ J x k ] − 1 f ( x k ) \begin{equation} x_{k+1}=x_k-[\mathrm{J}_{x_k}]^{-1}f(x_k) \end{equation} xk+1=xk[Jxk]1f(xk)

4.2 牛顿迭代法解求方程根

  • 已知: f ( x ) = x 2 − 9 = 0 f(x)=x^2-9=0 f(x)=x29=0,用牛顿迭代的方法求解方程的根
  • 根据迭代公式可得: f ′ ( x ) = J x k = 2 x , f ( x k ) = x k 2 − 9 f'(x)=\mathrm{J}_{x_k}=2x,f(x_k)=x_k^2-9 f(x)=Jxk=2x,f(xk)=xk29
    x k + 1 = x k − [ J x k ] − 1 f ( x k ) → x k + 1 = x k − f ( x k ) J x k \begin{equation} x_{k+1}=x_k-[\mathrm{J}_{x_k}]^{-1}f(x_k)\rightarrow x_{k+1}=x_k-\frac{f(x_k)}{\mathrm{J}_{x_k}} \end{equation} xk+1=xk[Jxk]1f(xk)xk+1=xkJxkf(xk)
  • 整理可得:
    x k + 1 = x k − x k 2 − 9 2 x k = 1 2 x k + 9 2 x k \begin{equation} x_{k+1}=x_k-\frac{x_k^2-9}{2x_k}=\frac{1}{2}x_k+\frac{9}{2x_k} \end{equation} xk+1=xk2xkxk29=21xk+2xk9
  • 收敛依据:
    判断新的近似值 x k + 1 x_{k+1} xk+1与当前值 x k x_k xk之间的差距是否小于某个值 ϵ = 1 0 − 10 \epsilon=10^{-10} ϵ=1010,如果小于该值则认为收敛,否则继续迭代。
  • 我们先设置初始值 x 0 = 2 x_0=2 x0=2可得 x 1 x_1 x1
    x 1 = 1 2 x 0 + 9 2 x 0 = 3.25 ; \begin{equation} x_{1}=\frac{1}{2}x_0+\frac{9}{2x_0}=3.25; \end{equation} x1=21x0+2x09=3.25;
  • 继续迭代得 x 2 x_2 x2
    x 2 = 1 2 x 1 + 9 2 x 1 = 3.0096153846153846 ; \begin{equation} x_{2}=\frac{1}{2}x_1+\frac{9}{2x_1}=3.0096153846153846; \end{equation} x2=21x1+2x19=3.0096153846153846;
  • 继续迭代得 x 3 x_3 x3
    x 3 = 1 2 x 2 + 9 2 x 2 = 3.000015360039322 ; \begin{equation} x_{3}=\frac{1}{2}x_2+\frac{9}{2x_2}=3.000015360039322; \end{equation} x3=21x2+2x29=3.000015360039322
  • 继续迭代得 x 4 x_4 x4
    x 4 = 1 2 x 3 + 9 2 x 3 = 3.0000000000393214 ; \begin{equation} x_{4}=\frac{1}{2}x_3+\frac{9}{2x_3}=3.0000000000393214; \end{equation} x4=21x3+2x39=3.0000000000393214
  • 可得 x 2 − 9 = 0 x^2-9=0 x29=0的解为 x 1 ∗ = 3 x_1^*=3 x1=3,同理初始化为 x 0 = − 2 x_0=-2 x0=2 可得 x 2 ∗ = − 3 x_2^*=-3 x2=3

4.3 牛顿迭代法解求方程根 Python

  • 代码: Python代码如下:
def newton_raphson(f, f_prime, x0, tol=1e-10, max_iter=100):
    x = x0
    for i in range(max_iter):
        fx = f(x)
        fpx = f_prime(x)

        # Newton-Raphson iteration
        x_new = x - fx / fpx

        print(f"Iteration {i + 1}: x = {x_new}")

        if abs(x_new - x) < tol:
            return x_new
        x = x_new

    raise ValueError("Newton-Raphson method did not converge")


# Define the function and its first derivative
f = lambda x: x ** 2 - 9
f_prime = lambda x: 2 * x

# Initial guesses
initial_guesses = [2, -2]

# Find the roots
for x0 in initial_guesses:
    root = newton_raphson(f, f_prime, x0)
    print(f"The root starting from {x0} is: {root}")
  • 运行结果:
Iteration 1: x = 3.25
Iteration 2: x = 3.0096153846153846
Iteration 3: x = 3.000015360039322
Iteration 4: x = 3.0000000000393214
Iteration 5: x = 3.0
The root starting from 2 is: 3.0
Iteration 1: x = -3.25
Iteration 2: x = -3.0096153846153846
Iteration 3: x = -3.000015360039322
Iteration 4: x = -3.0000000000393214
Iteration 5: x = -3.0
The root starting from -2 is: -3.0

5. 梯度下降和经典牛顿法

对于无约束问题的梯度下降,我们一般有两种方法:

5.1 线搜索方法

运用泰勒一阶信息,迭代方向为负梯度方向:

  • 迭代方程:
    x k + 1 = x k + α k p k \begin{equation} x_{k+1}=x_k +\alpha_k p_k \end{equation} xk+1=xk+αkpk
  • 方向 p k p_k pk:负梯度方向 − ∇ F -\nabla F F
  • 步长: α k = s k \alpha_k=s_k αk=sk,深度学习中叫学习率
  • 更新后的方程如下:
    x k + 1 = x k − s k ∇ F \begin{equation} x_{k+1}=x_k -s_k \nabla F \end{equation} xk+1=xkskF

5.2 经典牛顿法

运用泰勒二阶信息,迭代方向为牛顿方向:迭代步长为 α 1 = 1 \alpha_1=1 α1=1

  • 迭代方程为,hessian matrix-> H j k H_{jk} Hjk可逆:
    x k + 1 = x k − [ H j k ] − 1 ∇ F ( x ) \begin{equation} x_{k+1}=x_k-[H_{jk}]^{-1}\nabla F(x) \end{equation} xk+1=xk[Hjk]1F(x)
  • 经典牛顿法为二次性收敛,速度非常快,具体分析请参考如下博客
    [优化算法]经典牛顿法

6. 凸优化问题

6.1 约束问题

我们定义凸函数为 f ( x ) f(x) f(x),凸集为 K \mathrm{K} K,我们的目的是为了求得凸函数 f ( x ) f(x) f(x)的最小值
min ⁡ x ∈ K f ( x ) , K : A x = b \begin{equation} \min\limits_{x\in K} f(x), \mathrm{K}:Ax=b \end{equation} xKminf(x)K:Ax=b

  • f ( x ) f(x) f(x)表示的是所有在碗内部上的和碗内表面上的点
  • 求的是在碗内表面的上的最小值,碗的形状就是约束条件 A x = b Ax=b Ax=b
    在这里插入图片描述

6.1 凸集组合

  • 如果 x 1 , x 2 x_1,x_2 x1,x2均在凸集里面,则由 x 1 , x 2 x_1,x_2 x1,x2组成的直线L在凸集里面
    在这里插入图片描述
  • 如果 x 1 , x 2 x_1,x_2 x1,x2分别在不同的凸集里面,则由 x 1 , x 2 x_1,x_2 x1,x2组成的直线L不在凸集里面
    在这里插入图片描述
  • 小结:合并图集里面组合的直线不在凸集里面。
  • 如果 x 1 , x 2 x_1,x_2 x1,x2都在不同的凸集里面的交集里面,则由 x 1 , x 2 x_1,x_2 x1,x2组成的直线L在凸集中
    在这里插入图片描述
  • 假设我们有两个凸函数 F 1 ( x ) , F 2 ( x ) F_1(x),F_2(x) F1(x),F2(x),我们定义如下:
    min ⁡ ( x ) = min ⁡ [ F 1 ( x ) , F 2 ( x ) ] ; max ⁡ ( x ) = max ⁡ [ F 1 ( x ) , F 2 ( x ) ] ; \begin{equation} \min(x)=\min[F_1(x),F_2(x)];\max(x)=\max[F_1(x),F_2(x)]; \end{equation} min(x)=min[F1(x),F2(x)];max(x)=max[F1(x),F2(x)];
  • 如果两个凸集相交,那么相交的凸集最大值,最小值如下:
    min ⁡ ( x ) = min ⁡ [ F 1 ( x ) , F 2 ( x ) ] − > 非凸; max ⁡ ( x ) = max ⁡ [ F 1 ( x ) , F 2 ( x ) ] − > 凸 ; \begin{equation} \min(x)=\min[F_1(x),F_2(x)]-> 非凸;\max(x)=\max[F_1(x),F_2(x)]->凸; \end{equation} min(x)=min[F1(x),F2(x)]>非凸;max(x)=max[F1(x),F2(x)]>;
  • 凸函数判断
    d 2 f ( x ) d x 2 ≥ 0 \begin{equation} \frac{\mathrm{d}^2f(x)}{\mathrm{d}x^2}\ge 0 \end{equation} dx2d2f(x)0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1916653.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

实验-ENSP实现防火墙区域策略与用户管理

目录 实验拓扑 自己搭建拓扑 实验要求 实验步骤 整通总公司内网 sw3配置vlan 防火墙配置IP 配置安全策略&#xff08;DMZ区内的服务器&#xff0c;办公区仅能在办公时间内&#xff08;9: 00- 18:00)可以访问&#xff0c;生产区的设备全天可以访问&#xff09; 配置nat策…

26.Labview波形图、XY图、强度图使用精讲

我们如何使用Labview显示曲线或者制作出下面这种我们想要的曲线并随着我们输入值的变化而变化呢&#xff1f; 本文详细讲解一下每种波形图的使用方式&#xff0c;帮助大家深入了解波形图的使用技巧。 文章中的所有程序已上传到下面链接中&#xff0c;下载地址(建议先转存)&am…

利用量子信息推进计算

利用量子信息推进计算 编译 李升伟 我们重点介绍 2024 年美国物理学会 3 月会议上关于量子计算和量子算法的热烈讨论&#xff0c;并邀请能够显著推动量子信息科学领域向前发展的论文提交。 美国物理学会 (APS) 三月会议可以说是世界上最大的年度物理学会议之一&#xff0c;今…

N32G45XVL-STB之lvgl的应用实例

目录 概述 1 硬件介绍 1.1 ST7796-LCD 1.2 MCU IO与LCD PIN对应关系 1.3 MCU IO与Touch PIN对应关系 2 N32G45x移植 LVGL 2.1 移植步骤 2.2 注意点 2.2.1 UI刷新函数 2.2.2 主函数中调用 3 LVGL的应用Demo 3.1 功能描述 3.2 代码实现 3.3 测试 N32G45XVL-STB之lv…

为Linux设置GRUB密码

正文共&#xff1a;999 字 11 图&#xff0c;预估阅读时间&#xff1a;1 分钟 我们前面介绍了如何恢复root密码&#xff08;CentOS 7.9遗忘了root密码怎么办&#xff1f;&#xff09;&#xff0c;虽然简单好用&#xff0c;但是可能会被不法分子利用&#xff0c;造成root密码以及…

Elasticsearch文档_id以数组方式返回

背景需求是只需要文档的_id字段&#xff0c;并且_id组装成一个数组。 在搜索请求中使用 script_fields 来整理 _id 为数组输出&#xff1a; POST goods_info/_search?size0 {"query": {"term": {"brand": {"value": "MGC"…

防火墙图形化界面策略和用户认证(华为)

目录 策略概要认证概要实验拓扑图题目要求一要求二要求三要求四要求五要求六 策略概要 安全策略概要&#xff1a; 安全策略&#xff08;Security Policy&#xff09;在安全领域具有双重含义。宏观上&#xff0c;安全策略指的是一个组织为保证其信息安全而建立的一套安全需求、…

通过图像高频信息保留图像细节,能保留多少细节-Comfyui

&#x1f9e8;前情提要 如果还不了解comfyui中图像高频信息保留细节的内容&#xff0c;可以参考上一篇文章&#xff1a; 图像中高频信息、低频信息与ComfyUI中图像细节保留的简单研究-CSDN博客 这次主要是简单测试下保留图像细节&#xff0c;能保留到什么程度&#xff1b; …

自建搜索引擎-基于美丽云

Meilisearch 是一个搜索引擎&#xff0c;主程序完全开源&#xff0c;除了使用官方提供的美丽云服务&#xff08;收费&#xff09;进行对接之外&#xff0c;还可以通过自建搜索引擎来实现完全独立的搜索服务。 由于成本问题&#xff0c;本博客采用自建的方式&#xff0c;本文就…

HybridCLR原理中的重点总结

序言 该文章以一个新手的身份&#xff0c;讲一下自己学习的经过&#xff0c;大家更快的学习HrbirdCLR。 我之前的两个Unity项目中&#xff0c;都使用到了热更新功能&#xff0c;而热更新的技术栈都是用的HybridCLR。 第一个项目本身虽然已经集成好了热更逻辑&#xff08;使用…

【排序 - 冒泡排序】

当我们谈论经典的排序算法时&#xff0c;冒泡排序&#xff08;Bubble Sort&#xff09;往往是最先被提及的一种。尽管它在实际应用中不太常见&#xff0c;但冒泡排序的简单易懂&#xff0c;有助于理解排序算法的基本原理和思想。 冒泡排序的基本原理 冒泡排序是一种基础的交换…

Git的基本知识点 + GitBash安装Pacman + Git命令含有中文,终端输出中文乱码

Git的基本知识点&#xff1a;整理自以下作者的文章繁华似锦Fighting的文章https://www.jianshu.com/nb/49854893另外还补充了git ls-file、.gitignore 等内容&#xff0c;涉及具体操作&#xff0c;还有命令总结。简略版可以看以上作者的文章&#xff0c;详细版可以看网盘里面的…

【企业级监控】源码部署Zabbix与监控主机

Zabbix企业级分布式监控 文章目录 Zabbix企业级分布式监控资源列表基础环境一、LNMP环境搭建&#xff08;在zbx主机上&#xff09;1.1、配置Yum仓库1.1.1、下载阿里云的仓库文件1.2.2、安装PHP7的仓库1.2.3、生成Mariadb10.11的仓库文件1.2.4、快速重建Yum缓存 1.2、安装PHP7.4…

Golang | Leetcode Golang题解之第228题汇总区间

题目&#xff1a; 题解&#xff1a; func summaryRanges(nums []int) (ans []string) {for i, n : 0, len(nums); i < n; {left : ifor i; i < n && nums[i-1]1 nums[i]; i {}s : strconv.Itoa(nums[left])if left < i-1 {s "->" strconv.It…

数学建模美赛经验小结

图片资料来自网络所听讲座&#xff0c;感谢分享&#xff01;

《C++设计模式》状态模式

文章目录 一、前言二、实现一、UML类图二、实现 一、前言 状态模式理解最基本上的我觉得应该也是够用了&#xff0c;实际用的话&#xff0c;也应该用的是Boost.MSM状态机。 相关代码可以在这里&#xff0c;如有帮助给个star&#xff01;AidenYuanDev/design_patterns_in_mode…

Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce

章节内容 上节我们完成了&#xff1a; Sqoop 介绍Sqoop 下载配置环境等Sqoop 环境依赖&#xff1a;Hadoop、Hive、JDBC 等环境补全 背景介绍 这里是三台公网云服务器&#xff0c;每台 2C4G&#xff0c;搭建一个Hadoop的学习环境&#xff0c;供我学习。 之前已经在 VM 虚拟机…

javaweb图书商城系统带万字文档网上书城java项目java课程设计java毕业设计

文章目录 图书商城系统一、项目演示二、项目介绍三、万字项目文档四、部分功能截图五、部分代码展示六、底部获取项目源码带万字文档&#xff08;9.9&#xffe5;带走&#xff09; 图书商城系统 一、项目演示 网上书城 二、项目介绍 语言&#xff1a;java 数据库&#xff1a;…

如何用 Python 远程控制 Windows 服务器?

大家好&#xff01;我是爱摸鱼的小鸿&#xff0c;关注我&#xff0c;收看每期的编程干货。 在信息时代的洪流中&#xff0c;掌握一门编程语言已经成为一项必备技能。Python&#xff0c;这门以简洁、易学、强大著称的编程语言&#xff0c;更是成为无数开发者的大宝剑。今天&…

maven——插件创建maven工程(了解即可)

对于之前手一个个文件夹创建&#xff0c;可能会觉得麻烦&#xff0c;maven出了个插件&#xff0c;可以直接创建出来。 使用这个指令就可以生成&#xff0c;是使用模板生成的&#xff0c;模板要告诉他用哪一个 告诉插件用的哪个模板&#xff1a; 范例&#xff1a; 创建java…