YOLOv5改进 | 注意力机制| 对密集和小目标友好的EVAblock【完整代码 + 小白轻松上手】

news2024/11/14 0:47:36

秋招面试专栏推荐深度学习算法工程师面试问题总结【百面算法工程师】——点击即可跳转


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡


专栏目录: 《YOLOv5入门 + 改进涨点》专栏介绍 & 专栏目录 |目前已有50+篇内容,内含各种Head检测头、损失函数Loss、Backbone、Neck、NMS等创新点改进


视觉特征金字塔在广泛的应用中显示出其有效性和效率的优越性。然而,现有的方法过分地集中于层间特征交互,而忽略了层内特征规则,这是经验证明是有益的。尽管一些方法试图借助注意机制或视觉变换器学习紧凑的层内特征表示,但它们忽略了对密集预测任务很重要的被忽略的角点区域。为了解决这一问题,本文提出了一种基于全局显式集中式特征规则的集中式特征金字塔(CFP)对象检测方法。具体而言,我们首先提出了一种空间显式视觉中心方案,其中使用轻量级MLP来捕捉全局长距离依赖关系,并使用并行可学习视觉中 心机制来捕捉输入图像的局部角区域。在此基础上,我们以自顶向下的方式对常用的特征金字塔提出了一个全局集中的规则,其中使用从最深层内特征获得的显式视觉中心信息。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改将修改后的完整代码放在文章的最后方便大家一键运行,小白也可轻松上手实践。以帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址YOLOv5改进+入门——持续更新各种有效涨点方法——点击即可跳转

目录

1. 原理

2. 将EVC添加到YOLOv5中

2.1 EVC代码实现

2.2 新增yaml文件

2.3 注册模块

2.4 执行程序

3. 完整代码分享

4. GFLOPs

5. 进阶

6. 总结


1. 原理

论文地址:Centralized Feature Pyramid for Object Detection——点击即可跳转

官方代码:官方代码仓库——点击即可跳转

Explicit Visual Center (EVC) 主要原理如下:

  1. 整体架构: EVC 主要由两个并行连接的模块组成:一个轻量级的多层感知器(MLP)用于捕捉顶层特征的全局长距离依赖(即全局信息),另一个是可学习的视觉中心机制,用于聚合层内的局部区域特征。这两个模块的结果特征图在通道维度上连接在一起,作为 EVC 的输出,用于下游识别任务。

  2. 输入特征处理: 输入图像首先通过一个主干网络(如 Modified CSP v5)提取五层特征金字塔(X0, X1, X2, X3, X4),其中每层特征的空间大小分别是输入图像的1/2, 1/4, 1/8, 1/16, 1/32。EVC 实现于特征金字塔的顶层(X4)上。

  3. 轻量级 MLP 模块: 轻量级 MLP 模块主要包括两个残差模块:基于深度卷积的模块和基于通道 MLP 的模块。深度卷积模块通过组归一化和深度卷积处理输入特征,然后进行通道缩放和 DropPath 操作,最后通过残差连接输出特征。

  4. 视觉中心机制: 可学习的视觉中心机制通过计算特征图中每个像素点相对于一组可学习的视觉词的位置信息来聚合局部特征。具体过程包括计算像素点与视觉词之间的距离,通过一个全连接层和一个 1x1 卷积层预测出突出关键类别的特征,然后与 Stem block 的输入特征进行通道乘法和通道加法操作。

  5. 输出特征整合: 最终,两个并行模块的输出特征图在通道维度上连接在一起,形成 EVC 的输出,用于下游的分类和回归任务。

EVC 机制通过结合全局和局部信息,有效地提升了视觉特征的表示能力,对于密集预测任务(如目标检测)非常重要。

2. 将EVC添加到YOLOv5中

2.1 EVC代码实现

关键步骤一:将下面代码粘贴到/yolov5-6.1/models/common.py文件中

class Encoding(nn.Module):
    def __init__(self, in_channels, num_codes):
        super(Encoding, self).__init__()
        # init codewords and smoothing factor
        self.in_channels, self.num_codes = in_channels, num_codes
        num_codes = 64
        std = 1. / ((num_codes * in_channels) ** 0.5)
        # [num_codes, channels]
        self.codewords = nn.Parameter(
            torch.empty(num_codes, in_channels, dtype=torch.float).uniform_(-std, std), requires_grad=True)
        # [num_codes]
        self.scale = nn.Parameter(torch.empty(num_codes, dtype=torch.float).uniform_(-1, 0), requires_grad=True)

    @staticmethod
    def scaled_l2(x, codewords, scale):
        num_codes, in_channels = codewords.size()
        b = x.size(0)
        expanded_x = x.unsqueeze(2).expand((b, x.size(1), num_codes, in_channels))

        # ---处理codebook (num_code, c1)
        reshaped_codewords = codewords.view((1, 1, num_codes, in_channels))

        # 把scale从1, num_code变成   batch, c2, N, num_codes
        reshaped_scale = scale.view((1, 1, num_codes))  # N, num_codes

        # ---计算rik = z1 - d  # b, N, num_codes
        scaled_l2_norm = reshaped_scale * (expanded_x - reshaped_codewords).pow(2).sum(dim=3)
        return scaled_l2_norm

    @staticmethod
    def aggregate(assignment_weights, x, codewords):
        num_codes, in_channels = codewords.size()

        # ---处理codebook
        reshaped_codewords = codewords.view((1, 1, num_codes, in_channels))
        b = x.size(0)

        # ---处理特征向量x b, c1, N
        expanded_x = x.unsqueeze(2).expand((b, x.size(1), num_codes, in_channels))

        # 变换rei  b, N, num_codes,-
        assignment_weights = assignment_weights.unsqueeze(3)  # b, N, num_codes,

        # ---开始计算eik,必须在Rei计算完之后
        encoded_feat = (assignment_weights * (expanded_x - reshaped_codewords)).sum(1)
        return encoded_feat

    def forward(self, x):
        assert x.dim() == 4 and x.size(1) == self.in_channels
        b, in_channels, w, h = x.size()

        # [batch_size, height x width, channels]
        x = x.view(b, self.in_channels, -1).transpose(1, 2).contiguous()

        # assignment_weights: [batch_size, channels, num_codes]
        assignment_weights = torch.softmax(self.scaled_l2(x, self.codewords, self.scale), dim=2)

        # aggregate
        encoded_feat = self.aggregate(assignment_weights, x, self.codewords)
        return encoded_feat


class Mlp(nn.Module):
    """
    Implementation of MLP with 1*1 convolutions. Input: tensor with shape [B, C, H, W]
    """

    def __init__(self, in_features, hidden_features=None,
                 out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
        self.act = act_layer()
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
        self.drop = nn.Dropout(drop)
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Conv2d):
            trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


#  1*1 3*3 1*1
class ConvBlock(nn.Module):
    def __init__(self, in_channels, out_channels, stride=1, res_conv=False, act_layer=nn.SiLU, groups=1,
                 norm_layer=partial(nn.BatchNorm2d, eps=1e-6)):
        super(ConvBlock, self).__init__()
        self.in_channels = in_channels
        expansion = 4
        c = out_channels // expansion

        self.conv1 = Conv(in_channels, c, act=nn.SiLU())
        self.conv2 = Conv(c, c, k=3, s=stride, g=groups, act=nn.SiLU())

        self.conv3 = Conv(c, out_channels, 1, act=False)
        self.act3 = act_layer(inplace=True)

        if res_conv:
            self.residual_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
            self.residual_bn = norm_layer(out_channels)

        self.res_conv = res_conv

    def zero_init_last_bn(self):
        nn.init.zeros_(self.bn3.weight)

    def forward(self, x, return_x_2=True):
        residual = x

        x = self.conv1(x)

        x2 = self.conv2(x)  # if x_t_r is None else self.conv2(x + x_t_r)

        x = self.conv3(x2)

        if self.res_conv:
            residual = self.residual_conv(residual)
            residual = self.residual_bn(residual)

        x += residual
        x = self.act3(x)

        if return_x_2:
            return x, x2
        else:
            return x


class Mean(nn.Module):
    def __init__(self, dim, keep_dim=False):
        super(Mean, self).__init__()
        self.dim = dim
        self.keep_dim = keep_dim

    def forward(self, input):
        return input.mean(self.dim, self.keep_dim)


class LVCBlock(nn.Module):
    def __init__(self, in_channels, out_channels, num_codes, channel_ratio=0.25, base_channel=64):
        super(LVCBlock, self).__init__()
        self.out_channels = out_channels
        self.num_codes = num_codes
        num_codes = 64

        self.conv_1 = ConvBlock(in_channels=in_channels, out_channels=in_channels, res_conv=True, stride=1)

        self.LVC = nn.Sequential(
            Conv(in_channels, in_channels, 1, act=nn.SiLU()),
            Encoding(in_channels=in_channels, num_codes=num_codes),
            nn.BatchNorm1d(num_codes),
            nn.SiLU(inplace=True),
            Mean(dim=1))
        self.fc = nn.Sequential(nn.Linear(in_channels, in_channels), nn.Sigmoid())

    def forward(self, x):
        x = self.conv_1(x, return_x_2=False)
        en = self.LVC(x)
        gam = self.fc(en)
        b, in_channels, _, _ = x.size()
        y = gam.view(b, in_channels, 1, 1)
        x = F.relu_(x + x * y)
        return x


class GroupNorm(nn.GroupNorm):
    """
    Group Normalization with 1 group.
    Input: tensor in shape [B, C, H, W]
    """

    def __init__(self, num_channels, **kwargs):
        super().__init__(1, num_channels, **kwargs)


class DWConv_LMLP(nn.Module):
    """Depthwise Conv + Conv"""

    def __init__(self, in_channels, out_channels, ksize, stride=1, act="silu"):
        super().__init__()
        self.dconv = Conv(
            in_channels,
            in_channels,
            k=ksize,
            s=stride,
            g=in_channels,
        )
        self.pconv = Conv(
            in_channels, out_channels, k=1, s=1, g=1
        )

    def forward(self, x):
        x = self.dconv(x)
        return self.pconv(x)


# LightMLPBlock
class LightMLPBlock(nn.Module):
    def __init__(self, in_channels, out_channels, ksize=1, stride=1, act="silu",
                 mlp_ratio=4., drop=0., act_layer=nn.GELU,
                 use_layer_scale=True, layer_scale_init_value=1e-5, drop_path=0.,
                 norm_layer=GroupNorm):  # act_layer=nn.GELU,
        super().__init__()
        self.dw = DWConv_LMLP(in_channels, out_channels, ksize=1, stride=1, act="silu")
        self.linear = nn.Linear(out_channels, out_channels)  # learnable position embedding
        self.out_channels = out_channels

        self.norm1 = norm_layer(in_channels)
        self.norm2 = norm_layer(in_channels)

        mlp_hidden_dim = int(in_channels * mlp_ratio)
        self.mlp = Mlp(in_features=in_channels, hidden_features=mlp_hidden_dim, act_layer=nn.GELU,
                       drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. \
            else nn.Identity()

        self.use_layer_scale = use_layer_scale
        if use_layer_scale:
            self.layer_scale_1 = nn.Parameter(
                layer_scale_init_value * torch.ones(out_channels), requires_grad=True)
            self.layer_scale_2 = nn.Parameter(
                layer_scale_init_value * torch.ones(out_channels), requires_grad=True)

    def forward(self, x):
        if self.use_layer_scale:
            x = x + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.dw(self.norm1(x)))
            x = x + self.drop_path(self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.dw(self.norm1(x)))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x


# EVCBlock
class EVCBlock(nn.Module):
    def __init__(self, in_channels, out_channels, channel_ratio=4, base_channel=16):
        super().__init__()
        expansion = 2
        ch = out_channels * expansion
        # Stem stage: get the feature maps by conv block (copied form resnet.py) 进入conformer框架之前的处理
        self.conv1 = Conv(in_channels, in_channels, k=3, act=nn.SiLU())
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)  # 1 / 4 [56, 56]

        # LVC
        self.lvc = LVCBlock(in_channels=in_channels, out_channels=out_channels, num_codes=64)  # c1值暂时未定
        # LightMLPBlock
        self.l_MLP = LightMLPBlock(in_channels, out_channels, ksize=3, stride=1, act="silu", act_layer=nn.GELU,
                                   mlp_ratio=4., drop=0.,
                                   use_layer_scale=True, layer_scale_init_value=1e-5, drop_path=0.,
                                   norm_layer=GroupNorm)
        self.cnv1 = nn.Conv2d(ch, out_channels, kernel_size=1, stride=1, padding=0)

    def forward(self, x):
        x1 = self.maxpool((self.conv1(x)))
        # LVCBlock
        x_lvc = self.lvc(x1)
        # LightMLPBlock
        x_lmlp = self.l_MLP(x1)
        # concat
        x = torch.cat((x_lvc, x_lmlp), dim=1)
        x = self.cnv1(x)
        return x

EVCBlock 处理图像的主要流程如下:

  1. 输入图像处理

    输入图像首先通过一个主干网络(如 Modified CSP v5)提取出五层特征金字塔(X0, X1, X2, X3, X4),每层特征图的空间大小分别是输入图像的1/2, 1/4, 1/8, 1/16, 1/32。
  2. 轻量级 MLP 模块

    对于顶层特征图(X4),首先输入到轻量级 MLP 模块。这个模块包括基于深度卷积的残差模块和基于通道 MLP 的残差模块。深度卷积模块通过组归一化和深度卷积处理输入特征,然后进行通道缩放和 DropPath 操作,最后通过残差连接输出特征。
  3. 视觉中心机制

    顶层特征图(X4)同时也输入到视觉中心机制。这个机制通过计算特征图中每个像素点相对于一组可学习的视觉词的位置信息来聚合局部特征。具体过程如下:
    • 然后与 Stem block 的输入特征进行通道乘法和通道加法操作。

    • 通过一个全连接层和一个 1x1 卷积层预测出突出关键类别的特征。

    • 计算像素点与视觉词之间的距离。

  4. 特征整合

    轻量级 MLP 模块和视觉中心机制的输出特征图在通道维度上连接在一起,形成 EVC 的输出特征。
  5. 下游任务处理

    最终的 EVC 输出特征图用于下游的分类和回归任务,提升了视觉特征的表示能力,有效地增强了密集预测任务(如目标检测)的性能。

2.2 新增yaml文件

关键步骤二在下/yolov5-6.1/models下新建文件 yolov5_EVC.yaml并将下面代码复制进去

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [-1, 1, EVCBlock, [512]],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]

温馨提示:本文只是对yolov5基础上添加模块,如果要对yolov8n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。


# YOLOv5n
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
 
# YOLOv5s
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
 
# YOLOv5l 
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
 
# YOLOv5m
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple
 
# YOLOv5x
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple

2.3 注册模块

关键步骤三在yolo.py的parse_model函数中注册 添加“EVCBlock",

elif m is EVCBlock:
            c1, c2 = ch[f], args[0]
            args = [c1, c2]

2.4 执行程序

在train.py中,将cfg的参数路径设置为yolov5_EVC.yaml的路径

建议大家写绝对路径,确保一定能找到

🚀运行程序,如果出现下面的内容则说明添加成功🚀

3. 完整代码分享

https://pan.baidu.com/s/1NMCYG0Wh9lmo8mFdnhiqsw?pwd=ojhm

提取码:ojhm  链接过期评论区提示我,我看到后及时更新

4. GFLOPs

关于GFLOPs的计算方式可以查看百面算法工程师 | 卷积基础知识——Convolution

未改进的GFLOPs

img

改进后的GFLOPs

5. 进阶

可以结合损失函数或者卷积模块进行多重改进

6. 总结

Explicit Visual Center (EVC) 是一种结合全局和局部信息的新型视觉特征提取机制。其主要通过两个并行模块处理图像顶层特征,一个是轻量级的多层感知器(MLP)模块,用于捕捉全局长距离依赖,另一个是可学习的视觉中心机制,用于聚合局部区域特征。轻量级 MLP 模块包括基于深度卷积和通道 MLP 的残差模块,而视觉中心机制通过计算特征图中每个像素点与可学习视觉词之间的距离来突出关键类别的特征。最终,这两个模块的输出特征图在通道维度上连接在一起,生成的特征图用于下游识别任务,从而有效提升了视觉特征的表示能力,特别是在密集预测任务中表现出色。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1915761.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

redis批量删除keys,用lua脚本。

文章目录 现象解决方法 现象 系统报错: misconf redis is configured to save ....后查看机器内存。 是内存满了,需要删除其中的key 解决方法 (1) 编写一个脚本,放在redis-cli.exe同一个目录 (2) 脚本内容如下: -- 使用Lua脚…

0MFC基于对话框模式——前置基础

文章目录 系统记得调成窗口![请添加图片描述](https://i-blog.csdnimg.cn/direct/e77eba56b14b42c8b86f210c72351684.png)基于对话框各部分代表![请添加图片描述](https://i-blog.csdnimg.cn/direct/673d07e6d17f4e528dd01ae8ebfa5b64.png)按钮实现函数方式![请添加图片描述](h…

【背就有效】软考中级信息系统监理师核心知识点汇总!

宝子们!上半年软考已经告一段落了,准备下半年考信息系统监理师的小伙伴可以开始准备了。这里给大家整理了信息系统监理师核心知识点汇总,涵盖全书90%的重点,先把这个存下!再慢慢看书,边看书边背这个&#x…

【利用GroundingDINO裁剪分类任务的数据集】及文本提示检测图像任意目标(Grounding DINO) 的使用

文章目录 背景1.Grounding DINO安装2.裁剪指定目标的脚本 背景 在处理公开数据集ImageNet-21k的时候发现里面有很多的数据有问题,比如,数据目标有很多背景,且部分类别有其他种类的图片。针对数据目标有很多背景,公开数据集ImageNe…

TongRDS 2214 docker版指引(by lqw )

文章目录 前言准备工作中心节点服务节点哨兵节点 前言 部署docker版本,建议先参考TongRDS2214手动部署版指引(by lqwsy) 在本地手动部署了一套适合业务场景的rds 服务后,再通过dockerfile 打镜像。 准备工作 1.准备对应的安装包…

新书速览|HTML5+CSS3 Web前端开发与实例教程:微课视频版

《HTML5CSS3 Web前端开发与实例教程:微课视频版》 本书内容 《HTML5CSS3 Web前端开发与实例教程:微课视频版》秉承“思政引领,立德树人”的教育理念,自然融入多维度、深层次的思政元素,全面对标企业和行业需求&#x…

【Windows】实现窗口子类化(基于远程线程注入)

目录 前言 原理解释 完整项目 相关文献 文章出处链接:[https://blog.csdn.net/qq_59075481/article/details/140334106] 前言 众所周知,DLL 注入有多种用途,如热修补、日志记录、子类化等。本文重点介绍使用 DLL 注入对窗口进行子类化。…

技术文件国产化准备

技术文档的本地化涉及调整内容以满足特定目标市场的文化、语言和技术要求。这一过程超越了简单的翻译,确保文件在文化上适合预期受众,在技术上准确无误。适当的准备对于成功的本地化至关重要,以下步骤概述了一种全面的方法。 分析目标受众 …

022-GeoGebra中级篇-几何对象之直线与坐标轴

本文主要介绍一下GeoGebra中直线的常见输入方式,比如工具栏输入、表达式输入、函数输入,最后再把坐标轴的调用简单介绍一下。内容比起传统的教学更偏向于实战一些,若感兴趣欢迎继续阅读。 目录 一、直线1. 关于工具栏绘制(1&#…

Dify中的工具

Dify中的工具分为内置工具(硬编码)和第三方工具(OpenAPI Swagger/ChatGPT Plugin)。工具可被Workflow(工作流)和Agent使用,当然Workflow也可被发布为工具,这样Workflow(工…

macOS系统下载navicat安装包

链接: https://pan.baidu.com/s/1SqTIXNL-B8ZMJxIBu1DfIw?pwdc1z8 提取码: c1z8 安装后效果

【Android组件】封装加载弹框

📖封装加载弹框 ✅1. 构造LoadingDialog✅2. 调用LoadingDialog 效果: ✅1. 构造LoadingDialog 构造LoadingDialog类涉及到设计模式中的建造者模式,进行链式调用,注重的是构建的过程,设置需要的属性。 步骤一&#x…

流模型flow

流模型 Flow 超详解,基于 Flow 的生成式模型,从思路到基础到公式推导到模型理解与应用(Flow-based Generative Model)_generative flows-CSDN博客

做一个专业的声音分析系统,需要对声音那些评判标准进行计算

为了构建一个专业的声音分析系统,需要对以下评判标准进行计算。每个标准需要相应的算法和技术指标来实现。下面是一些关键的评判标准和如何计算这些标准的具体方法: 1. 音质 清晰度 信噪比(SNR):计算音频信号中的信…

Linux udp编程

我最近开了几个专栏,诚信互三! > |||《算法专栏》::刷题教程来自网站《代码随想录》。||| > |||《C专栏》::记录我学习C的经历,看完你一定会有收获。||| > |||《Linux专栏》&#xff1…

Milvus 核心概念(1) ---- 数据一致性的等级及使用场景

目录 背景 Milvus的数据一致性 设置数据一致性等级 等级类型 PACELC定理 level 详细解释 Strong Bounded staleness Session Eventually 总结 背景 分布式上的可扩展性是个比较重要的concept。Chroma 核心之前写过了,他的最大优势在于轻量级且好用。Milvus相对Ch…

C++ //练习 14.44 编写一个简单的桌面计算器使其能处理二元运算。

C Primer(第5版) 练习 14.44 练习 14.44 编写一个简单的桌面计算器使其能处理二元运算。 环境:Linux Ubuntu(云服务器) 工具:vim 代码块 /**********************************************************…

轻松理解c++17的string_view

文章目录 轻松理解c17的string_view设计初衷常见用法构造 std::string_view常用操作作为函数参数 注意事项总结 轻松理解c17的string_view std::string_view 是 C17 引入的一个轻量级、不拥有(non-owning)的字符串视图类。它的设计初衷是提供一种高效、…

今天小编强烈推荐几款国产APP!

AI视频生成:小说文案智能分镜智能识别角色和场景批量Ai绘图自动配音添加音乐一键合成视频https://aitools.jurilu.com/ 今天小编强烈推荐几款国产APP,算得上是国产之光。如果能帮助到大家,别忘了给小编点点赞加关注哟!更多精彩还在后面。 一、…

第二证券:转股溢价率是什么意思?高好还是低好?

转股溢价率是指可转债在商场上的交易价格相对于其转股价值的溢价份额,能够用来衡量投资者为取得将债券转换为股票权力而付出的额定金额,是可转债的重要指标。 转股溢价率的核算公式为:溢价率=(转债价格-转股价值&…