Redis 主从复制,集群与高可用

news2024/9/24 21:23:33

虽然Redis可以实现单机的数据持久化,但无论是RDB也好或者AOF也好,都解决不了单点宕机问题,即一旦单台 redis服务器本身出现系统故障、硬件故障等问题后,就会直接造成数据的丢失

此外,单机的性能也是有极限的,因此需要使用另外的技术来解决单点故障和性能扩展的问题。

一.redis主从复制

1.redis 主从复制架构

主从模式(master/slave),可以实现Redis数据的跨主机备份。

程序端连接到高可用负载的VIP,然后连接到负载服务器设置的Redis后端real server,此模式不需要在程序里面配 置Redis服务器的真实IP地址,当后期Redis服务器IP地址发生变更只需要更改redis 相应的后端real server即可, 可避免更改程序中的IP地址设置。

2.主从复制特点

  • 一个master可以有多个slave

  • 一个slave只能有一个master

  • 数据流向是从master到slave单向的

3.主从复制的基本原理

配置设置

主节点(Master):配置允许从节点连接,并记录所有数据变更(写操作)。
从节点(Slave):配置连接到主节点,并接收主节点发送的数据副本。

复制流程

主节点持续记录执行的写操作(包括SET、DEL等),并将这些写操作以命令的形式发送给所有连接的从节点。
从节点接收到这些命令并执行,以确保其数据与主节点保持同步。

初始化同步

新的从节点在连接到主节点时,可以选择全量复制(将主节点的所有数据复制一份到从节点)或者部分复制(只复制从连接后的数据变更)。

心跳检测和重连

主从节点之间通过心跳机制保持连接。如果从节点与主节点断开连接,它会尝试重新连接并请求同步缺失的数据。

读写分离

从节点可以用于处理只读操作,以减轻主节点的负载。客户端可以选择性地连接到从节点进行读取操作,从而分担主节点的读取压力。

当配置Redis复制功能时,强烈建议打开主服务器的持久化功能。否则的话,由于延迟等问题,部署的主节点Redis服务应该要避免自动启动。

参考案例: 导致主从服务器数据全部丢失

1.假设节点A为主服务器,并且关闭了持久化。并且节点B和节点c从节点A复制数据
2.节点A崩溃,然后由自动拉起服务重启了节点A.由于节点A的持久化被关闭了,所以重启之后没有任何数据
3.节点B和节点c将从节点A复制数据,但是A的数据是空的,于是就把自身保存的数据副本删除。

在关闭主服务器上的持久化,并同时开启自动拉起进程的情况下,即便使用Sentinel来实现Redis的高可用性,也是非常危险的。因为主服务器可能拉起得非常快,以至于Sentinel在配置的心跳时间间隔内没有检测到主服务器已被重启,然后还是会执行上面的数据丢失的流程。无论何时,数据安全都是极其重要的,所以应该禁止主服务器关闭持久化的同时自动启动。

4.命令行配置

命令解释
info replication查看主从状态
repliacaof添加主从配置 例子: repliacaof 192.168.91.100 6379
CONFIG SET masterauth 123456设置密码
REPLICAOF no one取消 主从配置

5.实现主从复制

主服务器:192.168.240.13

[root@localhost ~]#vim /etc/redis/6379.conf 
70 bind 0.0.0.0
#将监听端口改为任意端口
requirepass  12345
#设置密码
172 logfile /var/log/redis_6379.log
#指定日志文件目录
264 dir /var/lib/redis/6379
#指定工作目录
700 appendonly yes
#开启AOF持久化功能

从服务器:192.168.240.14  

#安装redis略
#修改配置文件

70 bind 0.0.0.0
#将监听端口改为任意端口
172 logfile /var/log/redis_6379.log
#指定日志文件目录
264 dir /var/lib/redis/6379
#指定工作目录
288  replicaof 192.168.91.100 6379
#设置 主从配置
masterauth   123456
#如果有密码  设置此行

700 appendonly yes
#开启AOF持久化功能

5.1关闭防火墙和selinux

[root@localhost ~]# systemctl stop firewalld
[root@localhost ~]# setenforce 0

5.2 进入从的配置文件 

 replicaof 192.168.240.13  6379
             #主服务器地址  #端口号
如果需要添加密码,在主服务器配置文件中添加密码
requirepass  a
在从服务器配置文件中加入
masterauth a

5.3 重新启动从服务器,并进入redis数据库查看主从状态

slave 状态只读无法写入数据

systemctl restart redis
redis-cli
127.0.0.1:6379> info replication

从服务器 

role:slave
表示当前 Redis 服务器的角色是从服务器。

master_host:192.168.240.13
指定当前从服务器正在复制的主服务器的 IP 地址。

master_port:6379
指定当前从服务器正在复制的主服务器的端口号。

master_link_status:up
表示从服务器与主服务器之间的连接状态为正常(连接已建立)。

master_last_io_seconds_ago:8
指示从服务器上次与主服务器进行通信的时间,单位为秒,这里表示距离上次通信已经过去了8秒。

master_sync_in_progress:0
表示当前没有正在进行中的主从同步操作。

slave_repl_offset:24865
指示从服务器当前的复制偏移量,即从主服务器已经复制到的数据量。

slave_priority:100
从服务器的复制优先级,这里设置为100,表示当前从服务器在进行故障转移时的优先级。

slave_read_only:1
表示从服务器是否设置为只读模式,这里设置为1,表示从服务器不接受写操作。

connected_slaves:0
指示当前连接到该从服务器的从服务器数量,这里为0,表示该从服务器没有其他从服务器连接。

master_replid:9c941d96163ba330053c1cb212c8ab5af806adb4
主服务器的复制 ID,用于标识主服务器的唯一标识符。

master_replid2:0000000000000000000000000000000000000000
辅助用于复制的 ID,通常为 40 个零,表示在执行故障转移时用作附加标识。

master_repl_offset:24865
主服务器的复制偏移量,表示当前主服务器已经复制给从服务器的数据量。

second_repl_offset:-1
第二个复制偏移量,通常不使用,这里值为 -1。

repl_backlog_active:1
表示复制后备日志(replication backlog)是否处于活动状态(active),即是否正在使用。

repl_backlog_size:1048576
复制后备日志的大小,这里为 1048576 字节(1 MB),表示可用于复制的最大历史数据量。

repl_backlog_first_byte_offset:24796
复制后备日志的第一个字节的偏移量,表示第一个有效数据在复制后备日志中的位置。

repl_backlog_histlen:70
复制后备日志的历史长度,表示当前复制后备日志中存储的历史数据条目数。

主服务器

role:master

#表示当前 Redis 服务器的角色是主服务器。
connected_slaves:1

#表示当前连接的从服务器数量,这里有一个从服务器连接到了主服务器。
slave0:ip=192.168.240.14,port=6379,state=online,offset=24935,lag=1

#描述了从服务器的详细信息:
   ip=192.168.240.14,port=6379:从服务器的 IP 地址和端口号。
   state=online:从服务器的状态,这里是在线状态。
   offset=24935:从服务器当前复制的偏移量(offset),即从主服务器同步的数据偏移量。
   lag=1:从服务器与主服务器的复制延迟,即从服务器在处理复制数据时的滞后量(以秒为单位)。
master_replid:9c941d96163ba330053c1cb212c8ab5af806adb4

#主服务器的复制 ID,用于标识主服务器的唯一标识符。
master_replid2:0000000000000000000000000000000000000000

#辅助用于复制的 ID,通常为 40 个零,表示在执行故障转移时用作附加标识。
master_repl_offset:24935

#主服务器的复制偏移量,表示当前主服务器已经复制给从服务器的数据量。
second_repl_offset:-1

#第二个复制偏移量,通常不使用,这里值为 -1。
repl_backlog_active:1

#表示复制后备日志(replication backlog)是否处于活动状态(active),即是否正在使用。
repl_backlog_size:1048576

#复制后备日志的大小,这里为 1048576 字节(1 MB),表示可用于复制的最大历史数据量。
repl_backlog_first_byte_offset:24796

#复制后备日志的第一个字节的偏移量,表示第一个有效数据在复制后备日志中的位置。
repl_backlog_histlen:140

#复制后备日志的历史长度,表示当前复制后备日志中存储的历史数据条目数。

测试:

6.删除主从复制

在从服务器执行 REPLIATOF NO ONE 指令可以取消主从复制

#取消复制,在slave上执行REPLIATOF NO ONE,会断开和master的连接不再主从复制, 但不会清除slave
上已有的数据
127.0.0.1:6379> REPLICAOF no one

7.主从复制故障恢复

master故障后,只能手动提升一个slave为新master,不支持自动切换。

之后将其它的slave节点重新指定新的master为master节点

Master的切换会导致master_replid发生变化,slave之前的master_replid就和当前master不一致从而会引发所有 slave的全量同步。

8.主从复制完整过程

1)从服务器连接主服务器,发送PSYNC命令
2)主服务器接收到PSYNC命令后,开始执行BGSAVE命令生成RDB快照文件并使用缓冲区记录此后执行的所有
写命令
3)主服务器BGSAVE执行完后,向所有从服务器发送RDB快照文件,并在发送期间继续记录被执行的写命令
4)从服务器收到快照文件后丢弃所有旧数据,载入收到的快照至内存
5)主服务器快照发送完毕后,开始向从服务器发送缓冲区中的写命令
6)从服务器完成对快照的载入,开始接收命令请求,并执行来自主服务器缓冲区的写命令
7)后期同步会先发送自己slave_repl_offset位置,只同步新增加的数据,不再全量同步

复制缓冲区配置参数

#复制缓冲区大小,建议要设置足够大
repl-backlog-size 1mb 

#Redis同时也提供了当没有slave需要同步的时候,多久可以释放环形队列:
repl-backlog-ttl   3600

9.主从同步优化配置

Redis在2.8版本之前没有提供增量部分复制的功能,当网络闪断或者slave Redis重启之后会导致主从之间的全量同步,即从2.8版本开始增加了部分复制的功能。

  1. repl-diskless-sync:

    功能: 控制是否使用无盘同步 RDB 文件。当设置为 yes 时,主服务器不会将 RDB 文件保存到磁盘上,而是直接通过 socket 文件发送给从服务器。
    建议配置: 根据实际情况选择,如果希望减少磁盘 I/O 操作并且网络条件良好,可以考虑设置为 yes
  2. repl-diskless-sync-delay:

    功能: 在使用无盘同步时,从服务器等待接收 RDB 数据的时间延迟。
    建议配置: 默认值为 5 秒通常是一个合理的设置,可以根据网络延迟和从服务器的性能调整。
  3. repl-ping-slave-period:

    功能: 从服务器向主服务器发送 ping 的时间间隔,用于保持连接。
    建议配置: 默认值为 10 秒通常是合适的,可以根据网络稳定性调整,不建议设置得太短以避免过多的网络开销。
  4. repl-timeout:

    功能: 设置主从连接的超时时间,超过此时间没有收到响应将认为连接断开。
    建议配置: 默认值为 60 秒通常是合适的,可以根据网络环境和延迟进行微调。
  5. repl-disable-tcp-nodelay:

    功能: 控制是否启用 TCP_NODELAY。启用后可以减少网络带宽消耗,但可能会增加同步延迟。
    建议配置: 根据数据的一致性要求和网络性能进行选择。通常选择 no,以确保数据同步的及时性和准确性。
  6. repl-backlog-size:

    功能: 主服务器用于保存复制数据的写入缓冲区大小。
    建议配置: 根据从服务器断开连接后能容忍的最长时间和主服务器的写入速率来设置。建议按照需求调整,确保足够的缓冲区来支持断线重连时的数据传输。
  7. repl-backlog-ttl:

    功能: 如果一段时间后没有从服务器连接到主服务器,定义主服务器写入缓冲区的超时时间。建议配置: 根据系统的需求设置合适的时间,以免长时间未使用的资源占用内存。
  8. slave-priority:

    功能: 设置从服务器的优先级,用于在主服务器故障后选举新的主服务器。
    建议配置: 如果有多个从服务器,可以设置不同的优先级以影响选举结果。
  9. min-replicas-to-write:

    功能: 设置主服务器至少需要多少个可用从服务器,否则拒绝执行写操作。
    建议配置: 根据系统的容错需求进行设置,确保即使部分从服务器不可用也能保持系统的可写性。
  10. min-slaves-max-lag:

    功能: 当从服务器的复制延迟超过设定值时,主服务器不再接受写操作。
    建议配置: 根据系统的性能和复制链路的稳定性设置合适的延迟阈值,以避免数据不一致性问题。

二.哨兵模式(Sentinel)

edis 哨兵模式是一种用于高可用性(High Availability, HA)的解决方案,它允许 Redis 在主从复制的基础上,提供自动故障恢复和故障转移的功能。主要用途是监控 Redis 实例,并在主节点失效时自动将一个从节点晋升为新的主节点,以保证服务的持续可用性。

1.主要组件和概念

哨兵(Sentinel)

哨兵是一个运行在独立进程中的程序,其主要任务是监控 Redis 实例的状态(主节点和从节点),并在主节点失效时执行自动故障转移。

主节点(Master)

Redis 中的主节点负责接收写操作,并将数据同步到所有从节点。

从节点(Slave)

从节点是主节点的复制品,它们复制主节点的数据,并在需要时可以晋升为新的主节点。

2.哨兵模式的工作原理

哨兵模式包括多个哨兵进程和多个 Redis 节点(主节点和从节点)。哨兵进程定期检查 Redis 实例的健康状态,并在发现故障时采取自动化的措施。

监控

每个哨兵进程会定期检查监控的 Redis 实例的健康状态,包括主节点和从节点。

故障检测

如果一个哨兵进程发现主节点不可用(比如网络故障、进程崩溃等),它会开始执行一系列故障检测步骤,以确保主节点确实不可用。

选举新主节点

当主节点被确认为不可用时,哨兵会通过一种投票机制选举一个从节点作为新的主节点。这个过程会考虑每个哨兵的优先级和配置,确保选举出的主节点具有一致性和可靠性。

故障转移

一旦新的主节点被选出,哨兵会协调所有的 Redis 客户端和其他哨兵,使它们知道新的主节点的位置。这个过程称为故障转移(failover),通常会在几秒钟内完成。

配置同步

新的主节点上任后,哨兵还会确保所有从节点正确地重新配置为新的主节点的从节点,并开始从新的主节点同步数据。

3.优点和适用场景

  • 自动化的高可用性:哨兵模式使得 Redis 集群在主节点故障时可以自动化地完成故障转移,减少了人工介入和服务中断的可能性。

  • 实时监控和通知:哨兵可以实时监控 Redis 的健康状况,并在必要时通过警报或通知管理员进行干预。

  • 简化扩展和维护:通过自动处理故障转移,哨兵模式简化了 Redis 集群的扩展和维护工作。

4.实现哨兵模式

哨兵的前提是已经实现了一个redis的主从复制的运行环境,从而实现一个一主两从基于哨兵的高可用

redis架构

注意: master 的配置文件中masterauth 和slave 都必须相同

所有主从节点的redis.conf中关健配置

主服务器:192.168.240.13 端口:6379  哨兵1

从服务器1:192.168.240.14 端口:6379 哨兵2

从服务器2:192.168.240.12 端口:6379 哨兵3

1)关闭防火墙关闭selinux

[root@localhost ~]# systemctl stop firewalld
[root@localhost ~]# setenforce 0

2)配置主从复制

3)编辑哨兵的配置文件

sentinel配置

Sentinel实际上是一个特殊的redis服务器,有些redis指令支持,但很多指令并不支持.默认监听在26379/tcp端口.

哨兵可以不和Redis服务器部署在一起,但一般部署在一起以节约成本

所有redis节点使用相同的以下示例的配置文件

[root@localhost redis-5.0.7]# cp sentinel.conf   /apps/redis/etc/
[root@localhost redis-5.0.7]# vim /apps/redis/etc/sentinel.conf
bind 0.0.0.0   #修改监听端口 
port 26379     #不用修改默认
daemonize yes  # 不用修改如果是systemd 启动模式, 修改后启动不了
pidfile "/apps/resdis/run/redis-sentinel.pid"  #指定pid文件
logfile "/apps/redis/log/sentinel_26379.log"  # 指定日志文件
dir "/tmp"  #工作目录不用修改

sentinel monitor mymaster 10.0.0.8 6379 2
#mymaster是集群的名称,此行指定当前mymaster集群中master服务器的地址和端口
#2为法定人数限制(quorum),即有几个sentinel认为master down了就进行故障转移,一般此值是所有sentinel节点(一般总数是>=3的 奇数,如:3,5,7等)的一半以上的整数值,比如,总数是3,即3/2=1.5,取整为2,是master的ODOWN客观下线的依据

sentinel auth-pass mymaster 123456
#mymaster集群中master的密码,注意此行要在上面行的下面

sentinel down-after-milliseconds mymaster 30000
#(SDOWN)判断mymaster集群中所有节点的主观下线的时间,    单位:毫秒,建议3000(3秒) 否则等待时间过长

sentinel parallel-syncs mymaster 1
#发生故障转移后,可以同时向新master同步数据的slave的数量,数字越小总同步时间越长,但可以减轻新master的负载压力

sentinel failover-timeout mymaster 180000
#所有slaves指向新的master所需的超时时间,单位:毫秒

sentinel deny-scripts-reconfig yes #禁止修改脚本

 修改文件的内容

[root@localhost etc]#grep -vE "^#|^$"  sentinel.conf 
bind 0.0.0.0
port 26379
daemonize  yes
pidfile /apps/redis/run/redis-sentinel.pid
logfile "/apps/redis/log/sentinel.log"
dir /tmp
sentinel monitor mymaster 192.168.240.13 6379 2
sentinel auth-pass  mymaster  123456
sentinel down-after-milliseconds mymaster 3000
sentinel parallel-syncs mymaster 1
sentinel failover-timeout mymaster 180000
sentinel deny-scripts-reconfig yes

4)准备service 文件 注意先开 主再开从 全部节点都需要

cat  >> /lib/systemd/system/redis-sentinel.service  <<eof
[Unit]
Description=Redis Sentinel
After=network.target
[Service]
ExecStart=/apps/redis/bin/redis-sentinel /apps/redis/etc/sentinel.conf --supervised systemd
ExecStop=/bin/kill -s QUIT $MAINPID
User=redis
Group=redis
RuntimeDirectory=redis
RuntimeDirectoryMode=0755
[Install]
WantedBy=multi-user.target
eof
[root@localhost etc]# systemctl daemon-reload 
[root@localhost etc]# systemctl start redis-sentinel.service

5)将主服务器上的sentinel.conf传输到两台从服务器

scp  -r /apps/redis/etc/sentinel.conf   192.168.240.14://apps/redis/etc/
scp  -r /apps/redis/etc/sentinel.conf   192.168.240.12://apps/redis/etc/

6)将所有节点上的sentinel.conf文件权限属主属组改为redis

[root@localhost ~]# cd /apps/redis/etc/
[root@localhost etc]# ls
redis.conf  sentinel.conf
[root@localhost etc]# chown redis.redis  sentinel.conf
[root@localhost etc]# ll
总用量 76
-rw-r--r--. 1 redis redis 61857 7月   9 16:09 redis.conf
-rw-r--r--. 1 redis redis  9804 7月  10 17:48 sentinel.conf

7)刷新配置文件,先开启主上的哨兵在开启从

[root@localhost etc]# systemctl daemon-reload 
[root@localhost etc]# systemctl start redis-sentinel.service
[root@localhost etc]# systemctl status redis-sentinel.service

8)主从服务器上查看日志文件

tail -f /apps/redis/log/sentinel.log
ss -natp |grep 26379

主服务器

 

从服务器 

9)测试,关闭主服务器redis

systemctl stop redis

查看日志

主服务器

从服务器1成为新的主服务器

从服务器1

从服务器1成为新的主服务器

从服务器2

从服务器1成为新的主服务器,从2指向新主

当再次开启原主服务器时

这是不会抢占主的位置会成为新主的从服务器

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1915078.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数字安全护航技术能力全景图 | 亚信安全实力占据75领域

近日&#xff0c;2024全球数字经济大会——数字安全生态建设专题论坛在北京成功举办。会上&#xff0c;中国信息通信研究院&#xff08;简称“中国信通院”&#xff09;正式发布了《数字安全护航技术能力全景图》&#xff0c;亚信安全凭借全面的产品技术能力&#xff0c;成功入…

蓝卓创始人褚健:工业软件是数字化转型的灵魂和核心驱动力

如果把“工业3.0”简单理解为就是“自动化”&#xff0c;“工业4.0”理解为是“智能化”&#xff0c;那么“智能化”的实现一定要有软件。如同今天的移动互联网&#xff0c;是因为有大量的APP&#xff0c;所以让人们进入了智能时代。映射到工业、制造业领域&#xff0c;就是要依…

[GICv3] 4. 中断分发和路由(Distribution and Routing)

&#x1f4a1;介绍如何将中断分发和路由到目标PE&#xff0c;以及中断号的分配。 分发和重分发&#xff08;The disributor an Redistributors&#xff09; 分配器为SPI提供路由配置&#xff0c;并持有所有相关的路由和优先级信息。重新分配器提供PPI和SGI的配置设置。 重新分…

京东速运|通过python查询快递单号API

本次讲解如何使用快递聚合供应商来实现查询京东速运快递物流轨迹&#xff0c;首先&#xff0c;我们需要准备的资源。 平台的密钥key&#xff1a;登录后在个人中心查看 测试接口的链接&#xff1a;在下方文档处查看 其中&#xff0c;KEY为用户后台我的api页面展示的API密钥, 代…

《米小圈漫画历史》:历史启蒙,看漫画书就可以啦!

在当今信息爆炸的时代&#xff0c;如何让孩子在娱乐中学习&#xff0c;一直是许多家长关心的问题。《米小圈漫画历史》系列作为一部集合了趣味性和教育性的漫画书&#xff0c;以其独特的视角和精彩的故事情节&#xff0c;成为了许多家庭历史启蒙的首选。本文将通过探索漫画书的…

MT3046 愤怒的象棚

思路&#xff1a; a[]存愤怒值&#xff1b;b[i]存以i结尾的&#xff0c;窗口里的最大值&#xff1b;c[i]存以i结尾的&#xff0c;窗口里面包含✳的最大值。 &#xff08;✳为新大象的位置&#xff09; 例&#xff1a;1 2 3 4 ✳ 5 6 7 8 9 则ans的计算公式b3b4c4c5c6b7b8b9…

探索AI大模型(LLM)减少幻觉的三种策略

大型语言模型&#xff08;LLM&#xff09;在生成文本方面具有令人瞩目的能力&#xff0c;但在面对陌生概念和查询时&#xff0c;它们有时会输出看似合理却实际错误的信息&#xff0c;这种现象被称为“幻觉”。近期的研究发现&#xff0c;通过策略性微调和情境学习、检索增强等方…

Linux基础指令解析+项目部署环境

文章目录 前言基础指令部署项目环境总结 前言 Linux的魅力在于其强大的可定制性和灵活性&#xff0c;这使得它成为了众多开发者和运维人员的首选工具。然而&#xff0c;Linux的指令系统庞大而复杂&#xff0c;初学者往往容易迷失其中。因此&#xff0c;本文将带领大家走进Linu…

一键换衣,这个AI可以让你实现穿衣自由

基于图像的虚拟穿衣是一种流行且前景广阔的图像合成技术&#xff0c;能够显著改善消费者的购物体验&#xff0c;并降低服装商家的广告成本。顾名思义&#xff0c;虚拟穿衣任务旨在生成目标人穿着给定服装的图像。 OOTDiffusion简述 图1 虚拟换衣 基于图像的虚拟穿衣目前面临两…

解决linux服务器下微信公众号授权和业务接口授权失败的问题

我们的公众号web站点代码在Windows服务器IIS下运行没有问题&#xff0c;迁移到linux 服务器的nginx下之后&#xff0c;出现了微信授权和接口授权无法通过引起的问题。如下图所示&#xff1a; 经过排查&#xff0c;发现是因为nginx配置默认对 http 配置节下的 underscores_in_he…

MySQL黑马教学对应视屏笔记分享之聚合函数,以及排序语句的讲解笔记

聚合函数 注意&#xff1a;null值不参与聚合函数的计算。 分组查询 2.where与having的区别 执行时机不同&#xff1a;where是在分组之前进行过滤&#xff0c;不满足where条件&#xff0c;不参与分组&#xff1b;而having是分组之后对结果进行过滤。判断条件不同&#xff1a;w…

3,区块链加密(react+区块链实战)

3&#xff0c;区块链加密&#xff08;react区块链实战&#xff09; 3.1 哈希3.2 pow-pos-dpos3.3非对称加密&#xff08;1&#xff09;对称加密AES&#xff08;2&#xff09;非对称加密RSA 3.4 拜占庭将军3.5 P2P网络3.6 区块链 3.1 哈希 密码学&#xff0c;区块链的技术名词 …

【SQL】MySQL中的字符串处理函数:concat 函数拼接字符串,COALESCE函数处理NULL字符串

MySQL中的字符串处理函数&#xff1a;concat 函数 一、concat &#xff08;&#xff09;函数1.1、基本语法1.2、示例1.3、特殊用途 二、COALESCE&#xff08;&#xff09;函数2.1、基本语法2.2、示例2.3、用途 三、进阶练习3.1 条件和 SQL 语句3.2、解释 一、concat &#xff0…

java中stirng真的不可改变么?

目录 1. 字符数组的私有性和不可变性 2. 没有提供修改内容的方法 3. 共享字符串常量池 4.不可变性的优点 5.结论 &#x1f388;边走、边悟&#x1f388;迟早会好 Java 中的 String 对象是不可变的。不可变性意味着一旦创建了一个 String 对象&#xff0c;它的值就不能再被…

怎么提高音频声音大小?提高音频声音大小的四种方法

怎么提高音频声音大小&#xff1f;在音频处理和编辑中&#xff0c;增加声音的音量是一个常见的需求&#xff0c;尤其是在确保音频清晰度和听觉效果的同时。调整音频的音量不仅仅是简单地提高音频的响度&#xff0c;它也涉及到如何保持音质的高标准&#xff0c;确保没有失真或削…

STM32智能机器人手臂控制系统教程

目录 引言环境准备智能机器人手臂控制系统基础代码实现&#xff1a;实现智能机器人手臂控制系统 4.1 数据采集模块 4.2 数据处理与控制算法 4.3 通信与网络系统实现 4.4 用户界面与数据可视化应用场景&#xff1a;机器人手臂管理与优化问题解决方案与优化收尾与总结 1. 引言 …

计算机组成原理:408考研|王道|学习笔记II

系列目录 计算机组成原理 学习笔记I 计算机组成原理 学习笔记II 目录 系列目录第四章 指令系统4.1 指令系统4.1.1 指令格式4.1.2 扩展操作码指令格式 4.2 指令的寻址方式4.2_1 指令寻址4.2_2 数据寻址 4.3 程序的机器级代码表示4.3.1 高级语言与机器级代码之间的对应4.3.2 常用…

leetcode--从前序与中序遍历序列构造二叉树

leetcode地址&#xff1a;从前序与中序遍历序列构造二叉树 给定两个整数数组 preorder 和 inorder &#xff0c;其中 preorder 是二叉树的先序遍历&#xff0c; inorder 是同一棵树的中序遍历&#xff0c;请构造二叉树并返回其根节点。 示例 1: 输入: preorder [3,9,20,15,…

提升机器视觉与机器学习软件安全性的实践策略

在近几年科技爆发中&#xff0c;机器学习&#xff08;ML&#xff09;和机器视觉&#xff08;MV&#xff09;的结合正在改变各行各业。机器学习通过数据驱动的算法让计算机能够自我学习&#xff0c;而机器视觉赋予计算机识别和理解图像的能力。这种结合使得计算机可以高效地执行…

传统的springboot项目中,如何进行添加自定义静态资源访问路径实现对静态资源的访问?

如何配置可以实现在浏览器中配置路径实现对resource资源路径下的index.html个性化定制访问路径 要在Spring Boot项目中配置使特定前缀访问静态资源&#xff0c;可以在application.yml文件中配置路径映射。以下是一个示例配置&#xff1a; 打开你的application.yml文件&#xf…