【正点原子i.MX93开发板试用连载体验】简单的音频分类

news2024/11/14 22:41:01

本文最早发表于电子发烧友论坛:

今天测试的内容是进行简单的音频分类。我们要想进行语音控制,就需要构建和训练一个基本的自动语音识别 (ASR) 模型来识别不同的单词。如果想了解这方面的知识可以参考TensorFlow的官方文档:简单的音频识别:识别关键词  |  TensorFlow Core。

 

预训练模型来自Simple Audio Recognition on a Raspberry Pi using Machine Learning (I2S, TensorFlow Lite) - Electronut Labs,我在它提供的代码基础上进行了修改。NXP官方的Model Zoo也提供了类似的代码,不过它需要TensorFlow类,而开发板上默认提供Tflite runtime推理框架,所以我没有使用NXP的方案。

 

本模型使用 Speech Commands 数据集的一部分,其中包含命令的短(一秒或更短)音频片段,例如“down”、“go”、“left”、“no”、“right”、“stop”、“up”和“yes”。

 

数据集中的波形在时域中表示,通过计算短时傅里叶变换 (STFT) 将波形从时域信号转换为时频域信号,以将波形转换为[频谱图](频谱图_百度百科 (baidu.com)),显示频率随时间的变化,并且可以表示为二维图像。然后把频谱图图像输入您的神经网络以训练模型。

 

在前面提到网页中有模型训练的方法。这里采用的是已经训练好的模型。在模型推理部分,首先从wav文件中读取语音数据,如果是双声道的,只使用其中的一个声道。默认音频的采样率是16k,只提取音频中的1s数据进行测试。数据提取后,需要归一化,然后利用STFT转换为频谱图,再输入神经网络进行计算。

 

程序中使用了scipy库进行STFT处理,所以需要先安装scipy库,执行如下命令:

 
pip3 install scipy

我在i.MX 93开发板上运行了测试Python程序,它可以正确识别YES和NO。其中yes.wav是我自己录制的。

 



测试代码和wav文件参见*附件:simple_audio.zip

 

现在所用的模型是浮点的,只能用于CPU推理而不能使用NPU推理。如果希望使用NPU推理,需要将模型进行转换,并修改程序进行量化处理。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1914873.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

DDoS攻击详解

DDoS 攻击,其本质是通过操控大量的傀儡主机或者被其掌控的网络设备,向目标系统如潮水般地发送海量的请求或数据。这种行为的目的在于竭尽全力地耗尽目标系统的网络带宽、系统资源以及服务能力,从而致使目标系统无法正常地为合法用户提供其所应…

光学、SAR卫星影像助力洞庭湖决堤抢险(附带数据下载)

​​ 点击下方全系列课程学习 点击学习—>ArcGIS全系列实战视频教程——9个单一课程组合系列直播回放 点击学习——>遥感影像综合处理4大遥感软件ArcGISENVIErdaseCognition 7月5日下午,湖南岳阳市华容县团洲乡团北村团洲垸洞庭湖一线堤防发生决口&#xff0…

关于.NETCORE站点程序部署到nginx上无法访问静态文件和无法正确生成文件的问题解决过程。

我的netcore6项目,部署到IIS的时候,生成报告时,需要获取公司LOGO图片放到PDF报告文件中,这时候访问静态图片没有问题。 然后还有生成邀请二维码图片,这时候动态创建图片路径和图片也没有问题,可以在站点的…

传知代码-多行人姿态检测系统

代码以及视频讲解 本文所涉及所有资源均在传知代码平台可获取 概述 本项目创新在于采用多级网络串联工作来进行目标的行为分析,并使用在视频监控领域,可部署在任何有需要的人员流动密集场所(如医院,机场,养老院等)或者用于空巢…

基于SpringBoot实现轻量级的动态定时任务调度

在使用SpringBoot框架进行开发时,一般都是通过Scheduled注解进行定时任务的开发: Component public class TestTask {Scheduled(cron"0/5 * * * * ? ") //每5秒执行一次public void execute(){SimpleDateFormat df new SimpleDateFormat(…

自定义枚举对象序列化规则: 在Json中以枚举的code值表示枚举;枚举序列化时,新增枚举描述字段;String到IEnum的转换

文章目录 引言I 案例分析1.1 接口签名计算1.2 请求对象1.3 枚举对象序列化1.4 创建JavaTimeModule以支持Java 8的时间日期类型序列化和反序列化1.5 请求对象默认值处理II 在JSON中以枚举的code值来表示枚举的实现方式2.1 自定义toString方法返回code2.2 使用@JsonValue注解,只…

buuctf面具下的flag

细节: 这道题可能因为是vmdk的原因 导致在window上 7z无法得到全部的信息 所以最后解压要在linux系统上 解密网站 Brainfuck/Ook! Obfuscation/Encoding [splitbrain.org] 这道题010打开,可以发现里面隐藏了很多 binwalk解压 两个文件 vmdk可以直接 用7z解压 7z x flag.…

1. InternLM - 入门岛

第1关 Linux 基础知识 1. 完成SSH连接与端口映射并运行hello_world.py SSH连接配置 # wsl2中生成密钥对(~/.ssh/id_rsa, ~/.ssh/id_rsa.pub) ssh-keygen -t rsa# 将id_rsa.pub在internStudio作为公钥导入SSH登录 $ ssh -p 38871 rootssh.intern-ai.o…

如何监控 PostgreSQL 中表空间的使用情况并进行合理的管理?

文章目录 如何监控 PostgreSQL 中表空间的使用情况并进行合理的管理 一、引言 在 PostgreSQL 数据库中,表空间(Tablespace)是用于管理数据库对象存储位置的逻辑存储区域。有效地监控和管理表空间的使用情况对于确保数据库的性能、优化存储资…

Flutter 开启混淆打包apk,并反编译apk确认源码是否被混淆

第一步:开启混淆并打包apk flutter build apk --obfuscate --split-debug-info./out/android/app.android-arm64.symbols 第二步:从dex2jar download | SourceForge.net 官网下载dex2jar 下载完终端进入该文件夹,然后运行以下命令就会在该…

【多GPU训练方法】

一、数据并行 这是最常用的方法。整个模型复制到每个GPU上。训练数据被均匀分割,每个GPU处理一部分数据。所有GPU上的梯度被收集并求平均。通常使用NCCL(NVIDIA Collective Communications Library)等通信库实现。参数更新 使用同步后的梯度…

愚人杯的RE题

easy_pyc pyc反编译成py文件 # uncompyle6 version 3.9.1 # Python bytecode version base 2.7 (62211) # Decompiled from: Python 3.11.8 (tags/v3.11.8:db85d51, Feb 6 2024, 22:03:32) [MSC v.1937 64 bit (AMD64)] # Embedded file name: enpyc.py # Compiled at: 2023…

批量下载手机中APP程序中文件

需求 利用 adb pull 下载手机中app的某目录 adb pull 命令本身不支持直接下载整个目录(文件夹)及其所有子目录和文件作为一个单一的操作。但是,可以通过一些方法来间接实现这一目的。 方法 1. 首先将要下载的目录进行 tar 打包 # 在 And…

初阶C++(三)

初阶C(三) 指针和引⽤的关系inline介绍对inline的运用宏函数与inline关系nullptr NULL在C中有歧义nullptr引用 指针和引⽤的关系 C中指针和引⽤就像两个性格迥异的亲兄弟,指针是哥哥,引⽤是弟弟,在实践中他们相辅相成,…

单向链表队列

实现单向链表队列的&#xff0c;创建&#xff0c;入队&#xff0c;出队&#xff0c;遍历&#xff0c;长度&#xff0c;销毁。 queue.h #ifndef __QUEUE_H__ #define __QUEUE_H__#include <stdio.h> #include <stdlib.h> #include <string.h> #define max 30…

Docker 使用基础(2)—镜像

&#x1f3ac;慕斯主页&#xff1a;修仙—别有洞天 ♈️今日夜电波&#xff1a;秒針を噛む—ずっと真夜中でいいのに。 0:34━━━━━━️&#x1f49f;──────── 4:20 &#x1f504; ◀️ ⏸ …

【机器学习】(基础篇三) —— 线性回归

线性回归 本文介绍最经典的监督学习问题——线性回归&#xff0c;包括单变量线性回归和多变量线性回归 线性回归是回归任务&#xff0c;输入是带有标签的数据&#xff0c;根据数据关系&#xff0c;拟合出一个线性函数&#xff0c;并利用该函数进行预测等操作。线性回归分为单…

AirPods Pro新功能前瞻:iOS 18的五大创新亮点

随着科技的不断进步&#xff0c;苹果公司一直在探索如何通过创新提升用户体验。iOS 18的推出&#xff0c;不仅仅是iPhone的一次系统更新&#xff0c;更是苹果生态链中重要一环——AirPods Pro的一次重大升级。 据悉&#xff0c;iOS 18将为AirPods Pro带来五项新功能&#xff0…

LLM 研究方向(一): LLM Prompts--p-tuning、LoRA

目录 1. prompt-tuning background 2. Prompt Tuning 模型介绍 2.1 2021 prefix-tuning 2.2 2021 P-tuning v1 2.3 2021 Parameter-efficient prompt tuning (PET) 2.4 2022 P-tuning v2 2.5 2019 Adapter ​2.6 2021 LoRA (Low-Rank Adaptation) 2.7 2024 DoRA (…

剖析自闭症孩子玩手的独特之处

自闭症孩子玩手的行为常常具有一些较为独特的特点。 重复性是一个显著的特征。他们可能会以一种几乎相同的方式、节奏和频率反复地摆弄自己的手&#xff0c;例如不停地握拳、张开&#xff0c;或者持续地旋转手腕。 动作的单调性也是常见的。玩手的方式可能较为单一&#xff0c;…