Ansys Zemax|什么是点扩散函数( PSF )

news2024/9/27 23:24:27

图片

附件下载

联系工作人员获取附件

概览

这篇文章讲述了:

  1. 什么是点扩散函数?

  2. 点列图

  3. 快速傅里叶变换计算的点扩散函数(FFT PSF)

  4. 惠更斯算法计算的点扩散函数(Huygens PSF)

  5. 如何使用非序列模式下的透镜和探测器观察惠更斯积分

  6. 对于序列模式下的透镜组,分析点扩散函数时如何在惠更斯和快速傅里叶变换计算两者间进行选择

什么是点扩散函数( PSF )?

PSF 是一个物空间的点光源经过光学系统后的辐射照度分布。望远镜对遥远行星成像就是一个很好的 PSF 例子:由于行星距离我们非常远以至于我们在任何条件下都可以把它当做一个点。虽然发光光源是一个理想的点,但是像点并不是一个点。这是因为两个主要原因:首先,光学系统的像差会影响像点,使其在有限的区域内扩散;其次,即使光学系统没有像差,衍射效应同样会使像点发生扩散。

OpticStudio 内置了三种计算 PSF 的方法:几何(无衍射效应)点列图、基于衍射效应的快速傅里叶变换( FFT )PSF 和惠更斯( Huygens )PSF 。这篇文章将讨论每种算法的理论基础,并给出了一些使用建议。

点列图:几何 PSF

点列图是 OpticStudio 中最基础的分析功能之一。该功能会加载多条从物空间点光源发出的光线,并对所有光线穿过光学系统进行追迹,然后将以图表的形式显示光线相对于特定参考点的坐标图。

本文中使用的示例系统是一个焦距为50mm、F 数为5的抛物面反射镜。物体放置于无穷远处。这是一个简单的牛顿望远镜系统,示例文件名为PSF_Newtonian.ZMX 。光学系统如下所示:

图片

两个视场下的点列图如下所示,其中一个视场为轴上视场,另一个为2°的离轴视场:

图片

如图可见,点列图是一堆点的集合,其中每一个点代表一根光线。每根光线间没有任何相互作用。点列图非常高效的展示了望远镜系统的几何效应或光线像差。其中,离轴几何 PSF 图像(2°视场下点列图)非常形象的展示了系统的慧差和像散。然而对于轴上视场,点列图给出了完美像点的分析结果。这是光学系统成像的正确结果吗?为了回答这一问题,我们需要将点列图的结果即点的分布,与衍射极限相比较。

将艾里斑( Airy Disk )的参考椭圆添加到点列图中是一个快速比对几何像差和衍射效应的方法。打开点列图的设置列表,并勾选显示艾里斑:

图片

现在,点列图将在几何点分布上的相应位置处,显示出艾里斑的直径:

图片

在轴上视场上点的分布远小于艾里斑,而在离轴视场上点的分布则远大于艾里斑。这表明点列图只能有效合理的展示离轴视场的成像结果。想要同时计算轴上和离轴视场正确的 PSF,则需要考虑衍射效应带来的影响。

通常来说,当光学系统的像差影响相比衍射效应大很多时,点列图是评价光学系统成像质量非常有效的方法。

FFT PSF

快速傅里叶变换( FFT )算法广泛应用于许多光电系统的频率分析中。从概念上讲,FFT 将一个空间上的分布分解为频域上的分布。对于傅里叶光学的详细讲解请参考书籍《 Introduction to Fourier optics 》,在用户手册的“物理光学传播( Physical Optics Propagation )”一章中也有对衍射理论的总结。两份资料都介绍了菲涅尔和夫琅禾费衍射理论。

大多数光学系统都满足基于夫琅禾费衍射理论的 FFT PSF 算法所必须的简化假设。其主要假设有:

  1. F 数足够大使得标量衍射理论成立

  2. 衍射 PSF 能量显著区域远小于光学系统出瞳到像面的距离

  3. 出瞳相对入瞳没有明显畸变。这表示入瞳上均匀分布的光线在出瞳上也应是合理的均匀分布

  4. 高采样率以满足准确模拟 PSF 的要求

  5. 像面上的主光线和法线夹角很小

光学系统的 FFT PSF 是通过如下方法计算所得:一组呈网格状分布的光线从点光源发出射向系统出瞳。OpticStudio 会使用幅值和光程差计算每一根光线出瞳处波前网格上对应点的复振幅。经过适当缩放后该网格的快速傅里叶变换经过平方得到 PSF 的实部值。如果计算是多波长的,则 PSF 将进行累加。想要计算序列模式系统的 FFT PSF,请在 OpticStudio 的主菜单中选择分析选项卡(Analysis)>点扩散函数(PSF)> FFT PSF 。示例文件牛顿望远镜系统的轴上视场的 FFT PSF,如下图所示,其分析设置参数稍后我们会做讨论。

图片

注意图中相似的艾里斑波形。牛顿望远系统的轴上视场像差为零,如上图所示这也是符合预期的结果。

为了生成如上图所示的图像,FFT PST 的设置菜单应该如下图所示:

图片

这里的采样是指对射向系统入瞳处的网格分布光线的采样率。OpticStudio 会自动设置显示网格的尺寸比采样网格大一倍,并将超出入瞳区域的数据用零代替。因此 PSF 的分析结果显示的点要比网格采样点多4倍。如果系统像差很小,则我们感兴趣的区域将集中在图表的中心。为了减少显示这些近似等于零的数据,我们选择显示网格为较小的尺寸。

在分析参数设置中可以使用多种网格尺寸来显示同样的 PSF 数据,可以设置如下图所示参数:

图片

显示网格的尺寸为128x128,视场编号为2,类型为对数,显示为伪彩色图。其分析结果如下图所示:

图片

惠更斯 PSF

从概念上讲,惠更斯 PSF 通过将点列图上每一根光线转换为一个小的平面波。回想一下,光线可以模拟一个小区域的平面波,因此光线在各向同性介质中与波前垂直。由光线模拟的平面波拥有振幅、相位和传播方向这三个参数。因此像面上的总辐照度分布可以考虑为所有追迹光线所代表的平面波的相干叠加。对所有光线的积分可以直接得到衍射 PSF。

OpticStudio 中大多数衍射效应是基于标量衍射理论的( F 数不会很小),但惠更斯算法在“使用偏振( Use Polarization )”开启时可以考虑电场的矢量特性。所有基于惠更斯算法的分析都全面考虑了偏振向量和偏振相位引入的像差。这一算法通过分别计算偏振电场的 Ex,Ey,Ez 分量,然后进行非相干叠加。和计算其他相位差一样,惠更斯算法会计算电场中每一个正交分量引入的偏振相位差。

实际上所有光学系统都满足进行惠更斯 PSF 计算的前提假设:

  • 采样率足够高以准确模拟 PSF

惠更斯 PSF 不是基于 FFT 进行计算的。虽然计算速度方面惠更斯 PSF 通常要比 FFT PSF 慢,但是在不满足 FFT PSF 前提假设的情况下惠更斯PSF要更加准确。使用 FFT PSF 假设有问题从而需要使用惠更斯 PSF 的情况有:

  1. 像面与主光线的垂直面存在明显倾斜

  2. 出瞳相对于入瞳存在明显的畸变

光学系统的惠更斯 PSF 的计算如下。从点光源出发追迹网格分布的光线并传播到像面。使用光线的振幅、坐标、方向余弦和光程差,计算每根光线在像空间网格上每点处的平面波的复振幅。将像空间每个网格点上所有光线的复振幅相干叠加。则像空间每个网格点上的强度为叠加复振幅的平方。如果计算中考虑多个波长,则对不同波长的 PSF 结果进行非相干叠加。

如果您想要计算序列模式下系统的惠更斯 PSF,在 OpticStudio 主菜单中选择分析选项卡( Analysis )> PSF > 惠更斯 PSF( Huygens PSF )。惠更斯 PSF 同样可以计算非序列元件(NSC)系统,我们将在后文中详细介绍。需要注意的是 FFT PSF 不能应用于非序列系统。

由用户定义的惠更斯 PSF 的关键设置参数是光瞳采样、像面采样和像面采样间距。这些参数可以在惠更斯 PSF 分析参数设置表中输入。打开参数设置表并如下图输入参数:

图片

像面采样间距为像面上每个网格点之间的距离,其单位为毫米。计算PSF 的总体区域的尺寸是像面采样和像面采样间距之积。

如下图所示为示例牛顿望远镜系统轴上视场的惠更斯 PSF:

图片

离轴视场如下图所示(将视场编号改为2):

图片

光线数量和像点越多,PSF 的分辨率和计算精度越高。但这会带来计算时间的增加。

观察惠更斯积分

观察积分过程的一种方法是一次观察一根光线的相干叠加结果。这可以通过在 OpticStudio 的非序列元件功能中设置相干探测器来完成。示例文件为HPSF_Integration.ZMX。

图片

该示例文件包括一个椭圆光源、一个单透镜和一个矩形探测器物体。光源在一个圆形区域内产生多条随机光线。所有光线沿 Z 轴平行出射。光源模拟一束准直光或无穷远的点光源。光线输出条数设为20,分析光线的条数设为1。这将使系统在同一时刻只分析一条光线,我们会在后文中详细讨论。透镜为一个简单的单透镜,它用来将平行光很好的聚焦在探测器上。探测器属性设置为吸收,像素数量为120x120。

需要注意的是,探测器的第11个参数“ PSF 波长模式(PSF Wave#)”设为1。

图片

这一设置可以让探测器计算相干惠更斯 PSF 的积分。每一根射到探测器上的光线都被转换为局部平面波,该平面波照射探测器上的所有像素。随后平面波在每一像素上的相干振幅,叠加到已探测的相干振幅上。这允许我们可根据需求每次只追迹一条光线,所以我们可以看到每一根单独光线的叠加效果。

每次积分一根光线

接下来让我们通过示例观察这一积分过程,打开示例文件HPSF_Integration,选择分析选项卡( Analysis )- 光线追迹(Trace Rays )- 光线追迹控制( Ray Trace Control )。选中自动更新( Auto Update )。点击“追迹( Trace )”。由于光源只定义了一根分析光线,因此一根随机的光线被追击并且探测器更新当前结果。再次点击“追迹”,但注意不先点击“清空探测器( Clear Detectors )”来追击第二根光线。此时两根光线的追迹结果将显示出两个传播方向有一定夹角的平面波的干涉结果,探测器将显示条纹图案。由于光线的选取是随机的,因此条纹图案每次也不相同,因此探测器结果可能与下图并不完全相同。

图片

每次点击“追迹”后,另一根光线的结果将与现在的结果叠加。经过10根光线追迹后,衍射 PSF 初步呈现出来。

图片

大约40根光线追迹后,可以看到艾里环逐渐形成。

图片

追迹数百根光线才可以使 PSF 显示出合理的分布结果。

同时追迹多跟光线

一次只追迹一条光线是为了将积分的过程可视化。要同时追迹多条光线,可在非序列元件编辑器当中的分析光线条数一栏中,将要分析的光源光线条数从1改为500。

图片

点击分析 >光线追迹开启光线追迹控件,点击“清除并追迹”,将同时对500条光线进行追迹,PSF 结果将被展示在探测器查看器窗口中。

图片

尽管追迹的光线是随机选择的,但 PSF 仍收敛为正确的艾里斑(该透镜系统为衍射极限系统)。

如何选择使用点列图、FFTPSF、惠更斯 PSF

在下面的情况中使用点列图:

  • 与衍射效应相比,系统几何像差对于成像质量的影响更加显著。这一点可以通过在点列图的设置中勾选“显示艾里斑”来进行检查。

在以下情况中选择使用 FFT PSF:

  • 像面上主光线与像面法线有一定的夹角

  • 与入瞳相比,出瞳的畸变并不显著

  • 相对于无比精确的结果,更加关注计算速度

在下面的情形中使用惠更斯 PSF:

  • 想最大程度获得精确结果

总结

本文围绕点列图,FFT PSF 以及惠更斯 PSF 进行了讨论。结论为:

  1. 点列图展示了光线像差,但并未考虑衍射效应

  2. FFT PSF 虽然考虑了衍射并适用于大多数的光学系统,但基于的算法有一定的前提假设

  3. 惠更斯 PSF 考虑了衍射,并适用于几乎所有的光学系统,相比与 FFT PSF 使用了较少的前提假设

  4. 惠更斯 PSF 可用于非序列系统,尽管这些系统并非用于成像。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1914313.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一篇教会你 位置式PID 在写码中的应用。

前言:编写不易,仅供学习,参考,谢谢理解,请勿转载。 #位置式|增量式PID区别 本系列的前两篇讲的是位置式PID 没有增量式 PID ,PID的变种有很多,常见的有 位置式PID 增量式PID PI PD 抗…

小公司是如何染上大公司病的

小公司,顾名思义就是小,船小好调头。​本应该是最具拼搏精神和灵活性的小公司却不幸染上了大公司病。创业难,守业更难,这些小公司是如何染上大公司病的? 一、管理过度 某公司规定,员工出差,到…

AIGC技术引领创意设计行业革新,“谁”能成职业发展新引擎?

随着科技的日新月异,生成式人工智能(AIGC)技术正迅速崛起,成为创意设计领域的一股强大新势力。该技术不仅显著提升了设计师的工作效率,更为他们打开了前所未有的创意空间。在这一波技术浪潮中,Adobe国际认证…

高考志愿怎么选专业,哪些是热门专业?

选专业看上去非常简单,但是真正做起来的时候确实不容易,因为对于很多结束高考的学生来说,选专业就意味着他们选择自己的未来,这可是直接关系到未来的学习和职业发展,关系到将来的就业方向,再加上现在的社会…

递归 猴子吃桃-java

有一堆桃子,猴子第一天吃了其中的一半,并再多吃了一个。 以后每天猴子都吃其中的一半,然后再多吃一个。 当到第10天时,想再吃时(即还没吃),发现只有一个桃子了。 问题:最初共多少个桃…

Visual studio 2023下使用 installer projects 打包C#程序并创建 CustomAction 类

Visual studio 2023下使用 installer projects 打包C#程序并创建 CustomAction 类 1 安装Visual studio 20203,并安装插件1.1 下载并安装 Visual Studio1.2 步骤二:安装 installer projects 扩展插件2 创建安装项目2.1 创建Windows安装项目2.2 新建应用程序安装文件夹2.3 添加…

生物素修饰稀土掺杂无机荧光纳米颗粒

一、基本概述 生物素,也被称为维生素H或辅酶R,是B族维生素的一种,主要参与代谢脂肪和蛋白质,维持人体的正常生长、发育和健康。稀土掺杂无机荧光纳米颗粒则因其良好的光学性能,如窄发射带、高稳定性、良好的生物相容性…

Emacs编辑器:Codigger操作系统中的编程艺术

在Codigger分布式操作系统中,我们荣幸地引入了Emacs编辑器,这是一款全球公认的、功能强大且用途广泛的文本编辑器。它为广大的用户提供了前所未有的文本编辑和软件开发体验。通过与Codigger操作系统以及SIDE的无缝集成,用户在使用过程中可以感…

我的AI音乐梦:ChatGPT帮我做专辑

​🌈个人主页:前端青山 🔥系列专栏:AI篇 🔖人终将被年少不可得之物困其一生 依旧青山,本期给大家带来ChatGPT帮我做音乐专辑 嘿,朋友们! 想象一下,如果有个超级聪明的机器人能帮你写…

linux自动化内存监控与告警

文章目录 前言一、脚本实现1. shell脚本实现2. 脚本功能概览 二、设置定时执行1. 编辑cron任务表2. 设置定时任务 三、通知结果示例总结 前言 在当今数字化与网络化日益普及的时代,系统管理与维护成为了确保业务连续性和数据安全的关键环节。其中,监控系…

fastadmin框架后台列表固定第一行列表固定头部

在列表中,如果列表字段很多,并且每页数量很多,往下拉的时候就不好辨别数据是哪个字段的,对用户造成不好的浏览体验。 通过以下方法,可以实现将列表的第一行,也就是头部,固定在第一行显示,这样就能轻松辨别每个数据对应是哪个字段的,增加用户的使用体验。 打开项目的…

Java面试八股之为什么要使用Redis

为什么要使用Redis 1. 性能提升:高速缓存 要点:Redis作为内存数据库,数据存放在内存中,访问速度远超传统的关系型数据库(如MySQL)。在项目中,将热点数据(如经常被查询但不频繁变更…

AI大模型知识点大梳理_ai大模型的精度以下哪项描述的准确

AI大模型是什么 AI大模型是指具有巨大参数量的深度学习模型,通常**包含数十亿甚至数万亿个参数。**这些模型可以通过学习大量的数据来提高预测能力,从而在自然语言处理、计算机视觉、自主驾驶等领域取得重要突破。 AI大模型的定义具体可以根据参数规模…

汇凯金业:天然橡胶的用途和作用

天然橡胶是一种由橡胶树(Hevea brasiliensis)的乳汁加工而成的弹性体,具有弹性好、强度高、耐磨性好、耐寒性好、电绝缘性好、易于加工等优点,是世界上重要的战略物资和不可缺少的工业原料。 天然橡胶的用途十分广泛,主要应用于以下领域&…

ASUS NUC 14 Pro+:掌中宇宙,性能无界

在这个追求多样性的斜杠时代,ASUS NUC 14 Pro 顺势而生,将浩瀚宇宙般的强大性能浓缩于方寸之间,它不仅是一款设备,更是助您探索多重身份的斜杠伙伴! 浑然天成,简约而不简单 小巧的机身、简约的线条、精致的…

康谋分享 | 自动驾驶联合仿真——功能模型接口FMI(三)

在之前的两篇文章中(文末往期回顾中可查看),我们主要介绍了功能模型接口FMI的主要组成部分和一些使用场景,今天就以康谋自动驾驶仿真软件aiSim为例,来展示一下如何建立一个FMU并实现基于UDP和FMI联合仿真(c…

IT专业入门,高考假期预习指南(C++学习路线)

目录 IT专业入门,高考假期预习指南 一、V C的学习内容: 二、C学习书籍: 三、学习网站: 四、技术学习路线图: IT专业入门,高考假期预习指南 七月来临,各省高考分数已揭榜完成。而高考的完结并不意味着学习的结束,而…

buuctf 二维码

文件下载下来是一个png的文件 做misc永远的好习惯就是先运行,后010 先运行,这个运行肯定就是扫码 啥也没有 里面还有个ZIP文件(zip的发明人名字是PK) 放在kali上binwalk分离 CTF工具隐写分离神器Binwalk安装和详细使用方法_binwalk下载-CSDN博客 里面有个text,需要密码 我…

安卓腾讯桌球多功能助手直装版

安卓13自测效果,安卓12-安卓12以下一定可以的,QQ登陆的话扫码登陆,两个手机,一个扫码,一个游戏,一个手机的话,你可以下载个虚拟机,然后本机直装,用虚拟机QQ扫码即可 微信…

美国商超入驻Homedepot,会成为传统家织厂家跨境赛道吗?

近年来,随着全球化步伐的加快和电子商务的蓬勃发展,越来越多的企业开始寻求跨境拓展的机会。在这样的背景下,美国知名的家居用品零售商超——Homedepot成为了许多国内外家织厂家关注的焦点。那么,美国商超入驻Homedepot究竟如何呢…