GLM4大模型微调入门实战-命名实体识别(NER)任务

news2024/9/28 13:25:19

[GLM4]是清华智谱团队最近开源的大语言模型。

以GLM4作为基座大模型,通过指令微调的方式做高精度的命名实体识别(NER),是学习入门LLM微调、建立大模型认知的非常好的任务。

在这里插入图片描述

显存要求相对较高,需要40GB左右。

知识点1:什么是指令微调?

大模型指令微调(Instruction Tuning)是一种针对大型预训练语言模型的微调技术,其核心目的是增强模型理解和执行特定指令的能力,使模型能够根据用户提供的自然语言指令准确、恰当地生成相应的输出或执行相关任务。

指令微调特别关注于提升模型在遵循指令方面的一致性和准确性,从而拓宽模型在各种应用场景中的泛化能力和实用性。

在实际应用中,我的理解是,指令微调更多把LLM看作一个更智能、更强大的传统NLP模型(比如Bert),来实现更高精度的NLP任务。所以这类任务的应用场景覆盖了以往NLP模型的场景,甚至很多团队拿它来标注互联网数据

知识点2:什么是命名实体识别?

命名实体识别 (NER) 是一种NLP技术,主要用于识别和分类文本中提到的重要信息(关键词)。这些实体可以是人名、地名、机构名、日期、时间、货币值等等。 NER 的目标是将文本中的非结构化信息转换为结构化信息,以便计算机能够更容易地理解和处理。

在这里插入图片描述

NER 也是一项非常实用的技术,包括在互联网数据标注、搜索引擎、推荐系统、知识图谱、医疗保健等诸多领域有广泛应用。

1.环境安装

本案例基于Python>=3.8,请在您的计算机上安装好Python,并且有一张英伟达显卡(显存要求并不高,大概10GB左右就可以跑)。

我们需要安装以下这几个Python库,在这之前,请确保你的环境内已安装好了pytorch以及CUDA

swanlab
modelscope
transformers
datasets
peft
accelerate
pandas
tiktoken

一键安装命令:

pip install swanlab modelscope transformers datasets peft pandas accelerate tiktoken

本案例测试于modelscope1.14.0、transformers4.41.2、datasets2.18.0、peft0.11.1、accelerate0.30.1、swanlab0.3.11、tiktoken==0.7.0

2.准备数据集

本案例使用的是HuggingFace上的[chinese_ner_sft]数据集,该数据集主要被用于训练命名实体识别模型。

在这里插入图片描述

chinese_ner_sft由不同来源、不同类型的几十万条数据组成,应该是我见过收录最齐全的中文NER数据集。

这次训练我们不需要用到它的全部数据,只取其中的CCFBDCI数据集(中文命名实体识别算法鲁棒性评测数据集)进行训练,该数据集包含LOC(地点)、GPE(地理)、ORG(组织)和PER(人名)四种实体类型标注,每条数据的例子如下:

{
  "text": "今天亚太经合组织第十二届部长级会议在这里开幕,中国外交部部长唐家璇、外经贸部部长石广生出席了会议。",
  "entities": [
    {
        "start_idx": 23,
        "end_idx": 25,
        "entity_text": "中国",
        "entity_label": "GPE",
        "entity_names": ["地缘政治实体", "政治实体", "地理实体", "社会实体"]},
        {
            "start_idx": 25,
            "end_idx": 28,
            "entity_text": "外交部",
            "entity_label": "ORG",
            "entity_names": ["组织", "团体", "机构"]
        },
        {
            "start_idx": 30,
            "end_idx": 33,
            "entity_text": "唐家璇",
            "entity_label": "PER",
            "entity_names": ["人名", "姓名"]
        }, 
        ...
    ],
"data_source": "CCFBDCI"
}

其中text是输入的文本,entities是文本抽取出的实体。我们的目标是希望微调后的大模型能够根据由text组成的提示词,预测出一个json格式的实体信息:

输入:今天亚太经合组织第十二届部长级会议在这里开幕,中国外交部部长唐家璇、外经贸部部长石广生出席了会议。

大模型输出:{"entity_text":"中国", "entity_label":"组织"}{"entity_text":"唐家璇", "entity_label":"人名"}...


现在我们将数据集下载到本地目录。下载方式是前往[chinese_ner_sft - huggingface]下载ccfbdci.jsonl到项目根目录下即可:

在这里插入图片描述

3. 加载模型

这里我们使用modelscope下载GLM4-9b-Chat模型(modelscope在国内,所以直接用下面的代码自动下载即可,不用担心速度和稳定性问题),然后把它加载到Transformers中进行训练:

from modelscope import snapshot_download, AutoTokenizer
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForSeq2Seq
import torch

model_id = "ZhipuAI/glm-4-9b-chat"    
model_dir = "./ZhipuAI/glm-4-9b-chat/"

# 在modelscope上下载GLM4模型到本地目录下
model_dir = snapshot_download(model_id, cache_dir="./", revision="master")

# Transformers加载模型权重
tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
model.enable_input_require_grads()  # 开启梯度检查点时,要执行该方法

4. 配置LoRA

from peft import LoraConfig, TaskType, get_peft_model

config = LoraConfig(
    task_type=TaskType.CAUSAL_LM,
    target_modules=["query_key_value", "dense", "dense_h_to_4h", "activation_func", "dense_4h_to_h"],
    inference_mode=False,  # 训练模式
    r=8,  # Lora 秩
    lora_alpha=32,  # Lora alaph,具体作用参见 Lora 原理
    lora_dropout=0.1,  # Dropout 比例
)

model = get_peft_model(model, config)

5. 配置训练可视化工具

我们使用SwanLab来监控整个训练过程,并评估最终的模型效果。

这里直接使用SwanLab和Transformers的集成来实现:

from swanlab.integration.huggingface import SwanLabCallback

swanlab_callback = SwanLabCallback(...)

trainer = Trainer(
    ...
    callbacks=[swanlab_callback],
)


如果你是第一次使用SwanLab,那么还需要去[swanlab.cn]上注册一个账号,在用户设置页面复制你的API Key,然后在训练开始时粘贴进去即可:

在这里插入图片描述

6. 完整代码

开始训练时的目录结构:

|--- train.py
|--- ccfbdci.jsonl

train.py:

import json
import pandas as pd
import torch
from datasets import Dataset
from modelscope import snapshot_download, AutoTokenizer
from swanlab.integration.huggingface import SwanLabCallback
from peft import LoraConfig, TaskType, get_peft_model
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForSeq2Seq
import os
import swanlab

def dataset_jsonl_transfer(origin_path, new_path):
    """
    将原始数据集转换为大模型微调所需数据格式的新数据集
    """
    messages = []

    # 读取旧的JSONL文件
    with open(origin_path, "r") as file:
        for line in file:
            # 解析每一行的json数据
            data = json.loads(line)
            input_text = data["text"]
            entities = data["entities"]
            match_names = ["地点", "人名", "地理实体", "组织"]
            
            entity_sentence = ""
            for entity in entities:
                entity_json = dict(entity)
                entity_text = entity_json["entity_text"]
                entity_names = entity_json["entity_names"]
                for name in entity_names:
                    if name in match_names:
                        entity_label = name
                        break
                
                entity_sentence += f"""{{"entity_text": "{entity_text}", "entity_label": "{entity_label}"}}"""
            
            if entity_sentence == "":
                entity_sentence = "没有找到任何实体"
            
            message = {
                "instruction": """你是一个文本实体识别领域的专家,你需要从给定的句子中提取 地点; 人名; 地理实体; 组织 实体. 以 json 格式输出, 如 {"entity_text": "南京", "entity_label": "地理实体"} 注意: 1. 输出的每一行都必须是正确的 json 字符串. 2. 找不到任何实体时, 输出"没有找到任何实体". """,
                "input": f"文本:{input_text}",
                "output": entity_sentence,
            }
            
            messages.append(message)

    # 保存重构后的JSONL文件
    with open(new_path, "w", encoding="utf-8") as file:
        for message in messages:
            file.write(json.dumps(message, ensure_ascii=False) + "\n")
            
            
def process_func(example):
    """
    对数据集进行数据预处理,主要用于被dataset.map调用
    """

    MAX_LENGTH = 384 
    input_ids, attention_mask, labels = [], [], []
    system_prompt = """你是一个文本实体识别领域的专家,你需要从给定的句子中提取 地点; 人名; 地理实体; 组织 实体. 以 json 格式输出, 如 {"entity_text": "南京", "entity_label": "地理实体"} 注意: 1. 输出的每一行都必须是正确的 json 字符串. 2. 找不到任何实体时, 输出"没有找到任何实体"."""
    
    instruction = tokenizer(
        f"<|system|>\n{system_prompt}<|endoftext|>\n<|user|>\n{example['input']}<|endoftext|>\n<|assistant|>\n",
        add_special_tokens=False,
    )
    response = tokenizer(f"{example['output']}", add_special_tokens=False)
    input_ids = instruction["input_ids"] + response["input_ids"] + [tokenizer.pad_token_id]
    attention_mask = (
        instruction["attention_mask"] + response["attention_mask"] + [1]
    )
    labels = [-100] * len(instruction["input_ids"]) + response["input_ids"] + [tokenizer.pad_token_id]
    if len(input_ids) > MAX_LENGTH:  # 做一个截断
        input_ids = input_ids[:MAX_LENGTH]
        attention_mask = attention_mask[:MAX_LENGTH]
        labels = labels[:MAX_LENGTH]
    return {"input_ids": input_ids, "attention_mask": attention_mask, "labels": labels}   

def predict(messages, model, tokenizer):
    """对测试集进行模型推理,得到预测结果"""
    device = "cuda"
    text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )
    model_inputs = tokenizer([text], return_tensors="pt").to(device)

    generated_ids = model.generate(
        model_inputs.input_ids,
        max_new_tokens=512
    )
    generated_ids = [
        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
    ]
    
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
    
    print(response)
     
    return response


model_id = "ZhipuAI/glm-4-9b-chat"    
model_dir = "./ZhipuAI/glm-4-9b-chat/"

# 在modelscope上下载GLM4模型到本地目录下
model_dir = snapshot_download(model_id, cache_dir="./", revision="master")

# Transformers加载模型权重
tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
model.enable_input_require_grads()  # 开启梯度检查点时,要执行该方法

# 加载、处理数据集和测试集
train_dataset_path = "ccfbdci.jsonl"
train_jsonl_new_path = "ccf_train.jsonl"

if not os.path.exists(train_jsonl_new_path):
    dataset_jsonl_transfer(train_dataset_path, train_jsonl_new_path)

# 得到训练集
total_df = pd.read_json(train_jsonl_new_path, lines=True)
train_df = total_df[int(len(total_df) * 0.1):]
train_ds = Dataset.from_pandas(train_df)
train_dataset = train_ds.map(process_func, remove_columns=train_ds.column_names)

# 配置LoRA
config = LoraConfig(
    task_type=TaskType.CAUSAL_LM,
    target_modules=["query_key_value", "dense", "dense_h_to_4h", "activation_func", "dense_4h_to_h"],
    inference_mode=False,  # 训练模式
    r=8,  # Lora 秩
    lora_alpha=32,  # Lora alaph,具体作用参见 Lora 原理
    lora_dropout=0.1,  # Dropout 比例
)

# 得到被peft包装后的模型
model = get_peft_model(model, config)

# 配置Transformers训练参数
args = TrainingArguments(
    output_dir="./output/GLM4-NER",
    per_device_train_batch_size=4,
    per_device_eval_batch_size=4,
    gradient_accumulation_steps=4,
    logging_steps=10,
    num_train_epochs=2,
    save_steps=100,
    learning_rate=1e-4,
    save_on_each_node=True,
    gradient_checkpointing=True,
    report_to="none",
)

# 设置SwanLab与Transformers的回调
swanlab_callback = SwanLabCallback(
    project="GLM4-NER-fintune",
    experiment_name="GLM4-9B-Chat",
    description="使用智谱GLM4-9B-Chat模型在NER数据集上微调,实现关键实体识别任务。",
    config={
        "model": model_id,
        "model_dir": model_dir,
        "dataset": "qgyd2021/chinese_ner_sft",
    },
)

# 设置Transformers Trainer
trainer = Trainer(
    model=model,
    args=args,
    train_dataset=train_dataset,
    data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
    callbacks=[swanlab_callback],
)

# 开始训练
trainer.train()

# 用随机20条数据测试模型
test_df = total_df[:int(len(total_df) * 0.1)].sample(n=20)

test_text_list = []
for index, row in test_df.iterrows():
    instruction = row['instruction']
    input_value = row['input']
    
    messages = [
        {"role": "system", "content": f"{instruction}"},
        {"role": "user", "content": f"{input_value}"}
    ]

    response = predict(messages, model, tokenizer)
    messages.append({"role": "assistant", "content": f"{response}"})
    result_text = f"{messages[0]}\n\n{messages[1]}\n\n{messages[2]}"
    test_text_list.append(swanlab.Text(result_text, caption=response))

# 记录测试结果
swanlab.log({"Prediction": test_text_list})
# 关闭SwanLab记录
swanlab.finish()


看到下面的进度条即代表训练开始:

在这里插入图片描述

7.训练结果演示

在SwanLab上查看最终的训练结果:

可以看到在2个epoch之后,微调后的GLM4的loss降低到了不错的水平——当然对于大模型来说,真正的效果评估还得看主观效果。

在这里插入图片描述

可以看到在一些测试样例上,微调后的GLM4能够给出准确的NER结果:

在这里插入图片描述

至此,你已经完成了qwen2指令微调的训练!

8.推理训练好的模型

训好的模型默认被保存在./output/GLM4-NER文件夹下。 推理模型的代码如下:

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

def predict(messages, model, tokenizer):
    device = "cuda"

    text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    model_inputs = tokenizer([text], return_tensors="pt").to(device)

    generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512)
    generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

    return response

model_dir = "./ZhipuAI/glm-4-9b-chat/"
lora_dir = "./output/GLM4-NER/checkpoint-1700"

# 加载原下载路径的tokenizer和model
tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", torch_dtype=torch.bfloat16)

# 加载训练好的Lora模型
model = PeftModel.from_pretrained(model, model_id=lora_dir)

input_text = "西安电子科技大学的陈志明爱上了隔壁西北工业大学苏春红,他们约定好毕业后去中国的苏州定居。"
test_texts = {
    "instruction": """你是一个文本实体识别领域的专家,你需要从给定的句子中提取 地点; 人名; 地理实体; 组织 实体. 以 json 格式输出, 如; {"entity_text": "南京", "entity_label": "地理实体"} 注意: 1. 输出的每一行都必须是正确的 json 字符串. 2. 找不到任何实体时, 输出"没有找到任何实体". """,
    "input": f"文本:{input_text}"
}

instruction = test_texts['instruction']
input_value = test_texts['input']

messages = [
    {"role": "system", "content": f"{instruction}"},
    {"role": "user", "content": f"{input_value}"}
]

response = predict(messages, model, tokenizer)
print(response)


输出结果为:

{"entity_text": "西安电子科技大学", "entity_label": "组织"}
{"entity_text": "陈志明", "entity_label": "人名"}
{"entity_text": "西北工业大学", "entity_label": "组织"}
{"entity_text": "苏春红", "entity_label": "人名"}
{"entity_text": "中国", "entity_label": "地理实体"}
{"entity_text": "苏州", "entity_label": "地理实体"}


如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1914097.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

将Hyper-V虚拟机与主机共享网络

Hyper-V 网络设置 目标 将Hyper-V虚拟机网络配置为与主机使用同一网络&#xff0c;并确保主机网络连接不受影响。 前提条件 主机上已安装Hyper-V已创建Hyper-V虚拟机 步骤 1. 配置主机网络共享 打开 控制面板 -> 网络和 Internet -> 网络连接。右键点击 WIAN,选择…

C++ 调用Halcon引擎,脚本调试代码

一&#xff0c;背景&#xff1a;C调用halcon最常见的方式便是转C代码&#xff0c;然后封装成函数或者类库。另外一种方式是调用Halcon脚本&#xff0c;不需要转换成C代码&#xff0c;Debug的时候&#xff0c;可以直接跳入halcon脚本&#xff0c;单步查看每一行算法执行情况&…

NSObject‘s MetaClass 的 super_class 指向谁 ?

在 Objective-C 运行时系统中&#xff0c;NSObject 是所有类的根类。为了理解 NSObject 的元类&#xff08;MetaClass&#xff09;以及它的 super_class 指针指向谁&#xff0c;我们需要理解元类的继承关系。 类和元类的关系 每个类对象都有一个 isa 指针&#xff0c;指向其元…

谷粒商城实战-25-分布式组件-SpringCloud Alibaba-Nacos配置中心-加载多配置集

文章目录 一&#xff0c;拆分配置集二&#xff0c;配置文件中配置多配置集1&#xff0c;引用多配置集2&#xff0c;验证 三&#xff0c;多配置集总结1&#xff0c;使用场景2&#xff0c;优先级 这一节介绍如何加载多个配置集。 大多数情况下&#xff0c;我们把配置全部放在一个…

【IEEE官方列表会议,EI, Scopus稳定检索】第三届半导体与电子技术国际研讨会(ISSET 2024,2024年8月23-25)

2024年第三届半导体与电子技术国际研讨会&#xff08;ISSET 2024&#xff09;将于2024年8月23-25日在中国西安举行。 ISSET 2024将围绕“半导体”与“电子技术”等相关最新研究领域&#xff0c;为来自国内外高等院校、科学研究所、企事业单位的专家、教授、学者、工程师等提供一…

url链接地址,#前的参数 和 #后的参数有什么区别

例如 http://localhost:8080/?beforeParams1#/workSchemelist/index?afterParams1 beforeParams 和 afterParams 区别 打印出来可以发现&#xff1a; beforeParams 是 url 的search参数&#xff0c;通过window.location.search获取 afterParams 是 route 的query参数&#…

练手项目---笔记大师

练手项目—笔记大师 项目地址 https://github.com/GXY00/NoteMaster/tree/master 给个⭐呗 项目功能实现 大部分功能已完成&#xff0c;少部分仍在学习中 主要用到的知识点&#xff1a; 开机动画&#xff1a;Timer、TimerTask登录注册功能&#xff1a;SQLitesharedPref…

力扣爆刷第162天之TOP100五连刷76-80(最小路径和、最长公共前缀、最长连续序列)

力扣爆刷第162天之TOP100五连刷76-80&#xff08;最小路径和、最长公共前缀、最长连续序列&#xff09; 文章目录 力扣爆刷第162天之TOP100五连刷76-80&#xff08;最小路径和、最长公共前缀、最长连续序列&#xff09;一、64. 最小路径和二、221. 最大正方形三、162. 寻找峰值…

UML图书管理系统用例图示例

新书速览|《UML 2.5基础、建模与设计实践》新书速览|《UML 2.5基础、建模与设计实践 【例4.4】图书管理系统用例图。 图书管理系统按其业务功能分成借阅者管理、图书管理、借书、还书和用户管理等几部分&#xff0c;这些职能对应于系统的不同组织部门。 1&#xff09;系统参…

密态计算,大模型“用数”的必由之路

文&#xff5c;白 鸽 编&#xff5c;王一粟 今年世界人工智能大会上&#xff0c;大模型如何走向深度应用成为重要议题。 但在大模型迈向深度应用的过程中&#xff0c;相比于算力的稀缺&#xff0c;“真正的问题是缺数据&#xff0c;无论是在通用技术领域&#xff0c;还是在专…

基于stm32单片机的智能手环的设计

摘 要 随着科技的飞速发展和人们生活水平的提高&#xff0c;健康与科技日益融合&#xff0c;智能可穿戴设备已成为现代人生活中不可或缺的一部分。智能手环&#xff0c;作为一种便携、实用且功能丰富的可穿戴设备&#xff0c;受到越来越多用户的喜爱。它不仅能够实时监测用户的…

鸿蒙开发:每天一个小bug----鸿蒙开发路由跳转踩坑

一、前言 报错内容显示找不到页面 &#xff0c;肯定我们页面没写对呗&#xff01; 可能是这几个原因:1.main_pages.json没配置路由 {"src": ["pages/02/UserInfoClass","pages/02/AppStorageCase02"] } 2.跳转路径没写对 错误&#xff1a;…

如何管理一百个ai专家智能体——ai调度系统设计

前言 如果你用过openai的chatgpt服务&#xff0c;你肯定知道一个叫做GPTs的智能体商店&#xff0c;里面提供了大量的来自官方和个人制作的专门针对某个领域的gpt助手。比如&#xff0c;你想让gpt帮忙写文章&#xff0c;并且要能够写得好&#xff0c;你就可以在商店中搜索相关的…

JS代码动态打印404页面源码

JS代码动态打印404页面源码&#xff0c;适合做网站错误页&#xff0c;具有js动态打印效果&#xff0c;喜欢的朋友可以拿去 源码由HTMLCSSJS组成&#xff0c;记事本打开源码文件可以进行内容文字之类的修改&#xff0c;双击html文件可以本地运行效果&#xff0c;也可以上传到服务…

跌200万后女子要卖掉能看西湖的房子周边有完善配套

今年楼市行情不太好,很多业主都是想要将手中多余的房子出售,因为不想亏 钱了。比如这个业主陈艳也是一样的,日前其决定要将国都公寓的房子出售,然而 根据陈艳描述,这套房子最大的亮点,就是在家就可以欣赏到西湖一隅的美景。 陈艳解释,十多年前买入时,为了居住更舒适,便将…

【Linux】进程7——查看进程

1.为什么进程管理这么重要呢&#xff1f; 这是因为&#xff1a; 首先&#xff0c;我们在操作系统时的各项任务其实都是经过某个PID来完成的&#xff08;包括你的bash环境&#xff09;&#xff0c;因此&#xff0c;能不能执行某项任务&#xff0c;就与该进程的权限有关了。再来…

LLM大模型应用中的安全对齐的简单理解

LLM大模型应用中的安全对齐的简单理解 随着人工智能技术的不断发展&#xff0c;大规模语言模型&#xff08;如GPT-4&#xff09;的应用越来越广泛。为了保证这些大模型在实际应用中的性能和安全性&#xff0c;安全对齐&#xff08;Safe Alignment&#xff09;成为一个重要的概…

PostgreSQL 中如何实现数据的增量更新和全量更新的平衡?

文章目录 一、增量更新与全量更新的概念增量更新全量更新 二、考虑的因素1. 数据量2. 数据更改的频率和规模3. 数据一致性要求4. 系统性能和资源利用5. 业务逻辑和流程 三、解决方案&#xff08;一&#xff09;混合使用增量更新和全量更新&#xff08;二&#xff09;使用临时表…

基于 Springboot 红酒庄内部信息管理系统 设计实现

目录 &#x1f4da; 前言 &#x1f4d1;摘要 &#x1f4d1;系统流程 &#x1f4da; 系统架构设计 &#x1f4da; 数据库设计 6.1数据三范式&#xff1a; &#x1f4da; 系统功能的具体实现 &#x1f4ac; 系统登录和首页 系统登录 首页 &#x1f4ac; 用户功能模块 添…

Backend - C# 操作PostgreSQL DB

目录 一、安装 Npgsql 插件 &#xff08;一&#xff09;作用 &#xff08;二&#xff09;操作 &#xff08;三&#xff09;注意 二、操作类 &#xff08;一&#xff09;操作类 1.NpgsqlConnection类 &#xff08;1&#xff09;作用 &#xff08;2&#xff09;引入 &a…