《大语言模型的临床和外科应用:系统综述》

news2025/1/11 16:49:26

这篇题为《大语言模型的临床和外科应用:系统综述》的文章对大语言模型(LLM)目前在临床和外科环境中的应用情况进行了全面评估。

大语言模型(LLM)是一种先进的人工智能系统,可以理解和生成类似人类的文本。这些模型,特别是那些利用生成式预训练转换模型(GPT)架构的模型,在包括医疗在内的各个领域都显示出了巨大的应用前景。大语言模型可以通过从庞大的数据集中学习,来处理和生成文本,使其能够预测和构建适切情景的应答。

该系统综述遵循系统综述和荟萃分析优先报告条目(PRISMA)指南,检索了六个数据库,以确定重点关注大语言模型的临床和外科应用的相关文章。该综述纳入了2023年以来的研究,共有34篇文章符合入选标准。这些文章包括14篇原研文章、7篇系统综述、8篇非系统综述、4封致编辑的信和1篇访谈。这些研究涵盖了广泛的医学专科,包括骨科、耳鼻喉科、头颈外科和整形外科。

大语言模型已有效地应用于临床环境,以提高诊断准确性和优化治疗方案。它们还通过解释复杂的医疗数据,在拓展医护人员的知识方面发挥了重要作用。这包括根据实验室检查结果和影像学检查结果提供见解,这有助于做出明智的临床决策。大语言模型在临床环境中的常见应用包括:

●诊断和鉴别诊断:大语言模型有助于诊断病情并产生鉴别诊断。

●治疗指导:为治疗方案和进一步的医疗检查提供建议。

●知识扩展与强化:通过解释实验室和影像检查结果来扩展与强化医生的知识。

●患者分诊和管理任务:简化患者管理和管理流程。

在外科手术环境中,大语言模型有助于更好地规划和执行手术。他们通过提供最佳实践和潜在的术中挑战的指导来帮助外科医生。此外,大语言模型可帮助维护易于理解的手术记录,确保手术治疗连续过程中的所有方面都被记录下来。在外科环境中,发现大语言模型可用于:

●医疗文书:协助完成准确而完整的手术过程记录。

●手术规划:帮助制定手术干预规划和策略。

●术中指导:在手术过程中提供实时支持和指导。

同时,该综述也强调了与大语言模型在医疗中的应用相关的若干局限性:

●应答的准确性和质量:对大语言模型生成的信息的准确性以及生成有偏见或不正确应答的可能性的担忧。

●偏差:大语言模型的训练数据集中存在的一些固有偏差,可能导致有偏差的输出。

●可靠性和可信度:医务人员需要严格评估和验证大语言模型产生的输出。

大语言模型可通过在患者治疗的各个方面支持临床医生和外科医生来显著改善和优化医疗服务。然而,解决与准确性、偏差和可靠性相关的限制也至关重要。大语言模型应视为补充医务人员专业知识的工具,而非取代他们。未来的研究应侧重于提高大语言模型输出的准确性和可靠性,并探索如何将这些模型有效整合到临床和手术工作流中的方法。

总之,这篇系统综述强调了大语言模型在推进医疗实践中的重要性,为希望利用人工智能技术优化患者治疗的临床医生和外科医生提供了宝贵的资源。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1912127.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何在不关闭防火墙的情况下,让两台设备ping通

问题现象 如题,做虚拟机实验的时候,有一台linux系统的虚拟机配置的ip地址是192.168.172.181 物理主机的ip地址是192.168.172.1 此时物理主机可以ping通虚拟机 但是虚拟机不能ping通物理主机 此时我们可以想到,有可能是物理主机防火墙的原因。…

S32V234平台开发(一)快速使用

快速使用 准备供电复位选择串口通信启动选择显示登陆系统 准备供电 s32v234可以使用两种电源供电 一种是左边电源端子,一种是右边电源适配器(12V 3A) 注意:不要同时使用两种电源同时供电 复位选择 Pressing POR RESET pulls active low EXT_POR signal on S32V2…

基于蓝牙iBeacon定位技术的商场3D楼层导视软件功能详解与实施效益

在现代商场的繁华与复杂中,寻找目的地往往令人头疼。维小帮3D楼层导视软件以其创新技术,为顾客带来无缝、直观的跨楼层导航体验,让每一次商场消费都成为享受。 商场3D楼层导视软件功能服务 3D多楼层导视地图,商场布局一览无遗 …

卷技术还是卷应用?李彦宏给出了明确答案

如何理解李彦宏说的“不要卷模型,要卷应用” 引言 7月4日,2024世界人工智能大会在上海世博中心召开。百度创始人兼CEO李彦宏在产业发展主论坛上呼吁:“大家不要卷模型,要卷应用!”这句话引起了广泛讨论。李彦宏认为&a…

安装nodejs | npm报错

nodejs安装步骤: 官网:https://nodejs.org/en/ 在官网下载nodejs: 双击下载下来的msi安装包,一直点next,我选的安装目录是默认的: 测试是否安装成功: 输入cmd打开命令提示符,输入node -v可以看到版本,说…

ByteMD富文本编辑器的vue3配置

Git地址:GitHub - bytedance/bytemd: ByteMD v1 repository 控制面板输入 npm install bytemd/vue-next 下载成功后在src/main.ts中引用 import "bytemd/dist/index.css";引入后保存,下面是一些插件,比如说我用到gmf和hightLight&…

Spring Cloud 引入

1.单体架构: 定义:所有的功能实现都打包成一个项目 带来的后果: ①后端服务器的压力越来越大,负载越来越高,甚至出现无法访问的情况 ②业务越来越复杂,为了满足用户的需求,单体应用也会越来越…

linux使用chattr与lsattr设置文件/目录防串改

背景 linux服务器下,防止某个文件/目录被串改(增删改),可以使用chattr与lsattr设置,这是一种保护机制,用于防止意外地修改或删除重要的文件内容。 chattr与lsattr使用 1.设置目录 图中/tmp/zhk,设置目录属性文件可能被设置为不可更改(immutable)或者只追加(append …

STM32智能仓库管理系统教程

目录 引言环境准备智能仓库管理系统基础代码实现:实现智能仓库管理系统 4.1 数据采集模块 4.2 数据处理与控制算法 4.3 通信与网络系统实现 4.4 用户界面与数据可视化应用场景:仓库管理与优化问题解决方案与优化收尾与总结 1. 引言 智能仓库管理系统通…

吴恩达机器学习作业ex8:K 异常检测和推荐系统(Python实现)详细注释

文章目录 1 异常检测1.1 高斯分布1.2 估计高斯参数1.3 选择阈值 ε1.4 高维数据集 2 推荐系统2.1 电影评分数据集2.2 协作过滤学习算法2.2.1 协同过滤成本函数2.2.2 梯度协同过滤2.2.3 Regularized cost function2.2.4 正则梯度 2.3 学习电影推荐2.3.1 推荐 后记 1 异常检测 在…

绩效管理为什么难?

几乎所有企业都知晓绩效管理的重要性,但许多企业陷入了把绩效考核当绩效管理的误区。绩效考核只是绩效管理过程中的一个环节,如果只重视“考核”这个环节,会极大限制员工个人和组织的成长。 绩效管理是一个动态过程,包括绩效目标设…

15.分频器设计--偶分频

设计一个六分频时钟信号 (1)visio视图: (2)Verilog代码: module divider_six(clk,reset_n,clk_out);input clk;input reset_n;output reg clk_out;reg [1:0]cnt;//计数器模块设计 always(posedge clk o…

gitee及git的简单使用、下载教(保姆级教程)

前言: GitHub,一个由外国研发的代码开源网站,我们可以通过它获得别人优秀的项目源码,也可以在上面上传自己的劳动成果。但是,我们很难访问外网。于是,我们将目光转向国内一个类似的网站---码云&#xff08…

Docker镜像拉取失败/下载缓慢?如何正确的更换Docker镜像源?(含镜像源,亲测有效!)

文章目录 📖 介绍 📖🏡 演示环境 🏡📒 Docker镜像源 📒📝 为何更换镜像源📝 如何更换Docker镜像源📝 验证镜像源更换成功📝 一些可用的Docker镜像源⚓️ 相关链接 ⚓️📖 介绍 📖 在当今快速迭代的软件开发环境中,Docker以其轻量级、可移植和高效的特…

Softmax回归中的损失函数

目录 一、损失函数介绍: 因为Softmax回归时逻辑回归的推广,所以Softmax回归的损失函数是逻辑回归损失函数的推广。 原文链接:逻辑回归中的损失函数 一、损失函数介绍: 与回归问题成本函数不同的是,Softmax回归模型&a…

大数据基础:Hadoop之HDFS重点架构原理

文章目录 Hadoop之HDFS重点架构原理 一、什么是Hadoop 二、HDFS简介 三、HDFS架构 3.1、NameNode 3.2、SecondaryNameNode 3.3、DataNode 3.4、Client 四、fsimage和editslog合并 五、Block副本放置策略 六、读写流程 6.1、HDFS写文件流程 6.2、HDFS读文件流程 Ha…

2,区块链、数字货币及其应用场景(react+区块链实战)

2,区块链、数字货币及其应用场景(react区块链实战) 一、什么是区块链?1 ibloackchain(1)安装ibloackchain(2)Blance查询余额(3)Mine挖矿(4&#x…

新技术引领商业智能新时代:从 AI 到自助分析的演变

最新技术资源: https://www.grapecity.com.cn/resources/ 引言:商业智能的新技术浪潮 在当今数据驱动的世界中,技术进步不断改变着商业智能(BI)领域。特别是人工智能(AI)和自助分析工具的发展&…

源代码保密:现代软件工程不可或缺的一环

SDC沙盒(Secure Development Container或Software Development Container,具体名称可能根据供应商有所不同)是一种专门设计用于保护软件开发过程中源代码安全的数据防泄漏系统(DLP, Data Leakage Prevention)。在源代码…

前端面试题24(css3)

下面是一些常见的 CSS3 面试题,这些问题可以帮助你评估应聘者对 CSS3 的掌握程度: 1. 解释 CSS3 中的动画关键帧(keyframes)和它们是如何工作的? 回答要点:keyframes 规则用于创建动画,它可以…