基于 LlamaIndex、Claude-3.5 Sonnet 和 MongoDB,构建具有超级检索能力的智能体

news2024/9/22 23:23:19

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对大模型技术趋势、算法项目落地经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。

总结链接如下:

  • 《大模型面试宝典》(2024版) 正式发布

喜欢本文记得收藏、关注、点赞。更多实战和面试交流,文末加入我们


想象一下,AI 助手可以无缝地与你互动,动态地根据你的需求检索信息并完成任务。随着智能体检索增强生成(RAG)的兴起,这一愿景正逐渐成为现实。

在本文中,我们将深入探讨这个令人兴奋的领域,探索如何利用强大的工具组合:LlamaIndex、Claude-3.5 Sonnet 和 MongoDB 来创建具有检索超级能力的 AI 智能体。

图片

工具集成

让我们看看如何将这些强大的工具结合在一起:

  • LlamaIndex:这个先进的搜索引擎擅长基于意义而不是关键词查找相似信息。它充当 AI 智能体的“眼睛”,在海量信息中定位最相关的数据。

  • Claude-3.5 Sonnet:它允许智能体处理 LlamaIndex 检索到的信息,生成响应。

  • MongoDB:一个强大的 NoSQL 数据库,MongoDB 在存储和管理支持 AI 智能体的知识库中起着关键作用。其灵活性允许存储各种数据类型,使其成为复杂信息检索任务的理想选择。

集成优势

这种协同作用带来了许多好处:

  • 增强的信息检索:LlamaIndex 的向量搜索功能确保 AI 智能体检索到最相关的信息,即使是细微的查询也不例外。

  • 动态任务完成:Claude-3.5 Sonnet 使 AI 智能体能够分析检索到的数据并采取适当的行动,使其真正成为能够独立行动的智能体。

  • 可扩展性和灵活性:MongoDB 处理大型数据集的能力允许系统随着信息需求的增加而增长。

代码实现

让我们深入研究使用 LlamaIndex、Claude-3.5 Sonnet 和 MongoDB 的智能体 RAG。

第一步:安装库

!pip install --quiet llama-index  # main llamaindex library
!pip install --quiet llama-index-vector-stores-MongoDB # mongodb vector database
!pip install --quiet llama-index-llms-anthropic # anthropic LLM provider
!pip install --quiet llama-index-embeddings-openai # openai embedding provider
!pip install --quiet pymongo pandas datasets # others

第二步:设置环境变量

import os
os.environ["ANTHROPIC_API_KEY"] = ""
os.environ["HF_TOKEN"] = ""
os.environ["OPENAI_API_KEY"] = ""
# WARNING: Never commit API keys or sensitive information to public repositories

LLM 和嵌入模型配置

from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.anthropic import Anthropic
from llama_index.core import Settings

llm = Anthropic(model="claude-3-5-sonnet-20240620")

embed_model = OpenAIEmbedding(
    model="text-embedding-3-small", 
    dimensions=256,
    embed_batch_size=10, 
    openai_api_key=os.environ["OPENAI_API_KEY"]
)

Settings.embed_model = embed_model
Settings.llm = llm

第三步:数据加载和处理

from datasets import load_dataset
import pandas as pd

# https://huggingface.co/datasets/MongoDB/airbnb_embeddings
dataset = load_dataset("MongoDB/airbnb_embeddings", split="train", streaming=True)
dataset = dataset.take(4000)

# Convert the dataset to a pandas dataframe
dataset_df = pd.DataFrame(dataset)

# Dataset comes with embeddings created with OpenAI, but we will recreate new ones
dataset_df = dataset_df.drop(columns=['text_embeddings'])
dataset_df.head(5)

第四步:生成嵌入

import json
from llama_index.core import Document
from llama_index.core.schema import MetadataMode

documents_json = dataset_df.to_json(orient='records')
documents_list = json.loads(documents_json)

llama_documents = []

for document in documents_list:
    # Convert complex objects to JSON strings
    for field in ["amenities", "images", "host", "address", "availability", "review_scores", "reviews", "image_embeddings"]:
        document[field] = json.dumps(document[field])

    # Create a Document object
    llama_document = Document(
        text=document["description"],
        metadata=document,
        excluded_llm_metadata_keys=["_id", "transit", "minimum_nights", "maximum_nights", "cancellation_policy", "last_scraped", "calendar_last_scraped", "first_review", "last_review", "security_deposit", "cleaning_fee", "guests_included", "host", "availability", "reviews", "image_embeddings"],
        excluded_embed_metadata_keys=["_id", "transit", "minimum_nights", "maximum_nights", "cancellation_policy", "last_scraped", "calendar_last_scraped", "first_review", "last_review", "security_deposit", "cleaning_fee", "guests_included", "host", "availability", "reviews", "image_embeddings"],
        metadata_template="{key}=>{value}",
        text_template="Metadata: {metadata_str}\n-----\nContent: {content}",
    )
    llama_documents.append(llama_document)

# Observing input examples
print("\nThe LLM sees this: \n", llama_documents[0].get_content(metadata_mode=MetadataMode.LLM))
print("\nThe Embedding model sees this: \n", llama_documents[0].get_content(metadata_mode=MetadataMode.EMBED))
from llama_index.core.node_parser import SentenceSplitter, SemanticSplitterNodeParser
from llama_index.core.schema import MetadataMode
from tqdm import tqdm

# semantic_splitter = SemanticSplitterNodeParser(
#     buffer_size=10, breakpoint_percentile_threshold=95, embed_model=embed_model
# )

base_splitter = SentenceSplitter(chunk_size=5000, chunk_overlap=200)

nodes = base_splitter.get_nodes_from_documents(llama_documents)

# Progress bar
pbar = tqdm(total=len(nodes), desc="Embedding Progress", unit="node")

for node in nodes:
    node_embedding = embed_model.get_text_embedding(
        node.get_content(metadata_mode=MetadataMode.EMBED)
    )
    node.embedding = node_embedding
    
    # Update the progress bar
    pbar.update(1)

# Close the progress bar
pbar.close()

print("Embedding process completed!")

第五步:MongoDB 设置

import pymongo

os.environ["MONGO_URI"] = ""

def get_mongo_client(mongo_uri):
    """Establish and validate connection to the MongoDB."""
    
    client = pymongo.MongoClient(mongo_uri, appname="devrel.showcase.python")

    # Validate the connection
    ping_result = client.admin.command('ping')
    if ping_result.get('ok') == 1.0:
        # Connection successful
        print("Connection to MongoDB successful")
        return client
    else:
        print("Connection to MongoDB failed")
    return None


mongo_client = get_mongo_client(mongo_uri)

DB_NAME = "airbnb"
COLLECTION_NAME = "listings_reviews"

db = mongo_client.get_database(DB_NAME)
collection = db.get_collection(COLLECTION_NAME)

第六步:向量数据库集成

from llama_index.vector_stores.mongodb import MongoDBAtlasVectorSearch

vector_store = MongoDBAtlasVectorSearch(
    mongo_client, 
    db_name=DB_NAME, 
    collection_name=COLLECTION_NAME, 
    index_name="vector_index"
)

vector_store.add(nodes)

第七步:创建检索工具和智能体

from llama_index.core import VectorStoreIndex
from llama_index.core.tools import QueryEngineTool, ToolMetadata
from llama_index.core.agent import FunctionCallingAgentWorker

index = VectorStoreIndex.from_vector_store(vector_store)
query_engine = index.as_query_engine(similarity_top_k=5, llm=llm)

query_engine_tool = QueryEngineTool(
    query_engine=query_engine,
    metadata=ToolMetadata(
        name="knowledge_base",
        description=(
            "Provides information about Airbnb listings and reviews."
            "Use a detailed plain text question as input to the tool."
        ),
    ),
)

agent_worker = FunctionCallingAgentWorker.from_tools(
    [query_engine_tool], llm=llm, verbose=True
)
agent = agent_worker.as_agent()

response = agent.chat("Tell me the best listing for a place in New York")
print(str(response))

结论

LlamaIndex、Claude-3.5 Sonnet 和 MongoDB 共同构建的智能体 RAG 未来充满可能性。

资料获取和交流

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

成立了大模型算法技术交流群,相关资料、技术交流&答疑,均可加我们的交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、微信搜索公众号:机器学习社区,后台回复:加群
方式②、添加微信号:mlc2040,备注:来自CSDN + 技术交流

通俗易懂讲解大模型系列

  • 重磅消息!《大模型面试宝典》(2024版) 正式发布!

  • 重磅消息!《大模型实战宝典》(2024版) 正式发布!

  • 做大模型也有1年多了,聊聊这段时间的感悟!

  • 用通俗易懂的方式讲解:大模型算法工程师最全面试题汇总

  • 用通俗易懂的方式讲解:不要再苦苦寻觅了!AI 大模型面试指南(含答案)的最全总结来了!

  • 用通俗易懂的方式讲解:我的大模型岗位面试总结:共24家,9个offer

  • 用通俗易懂的方式讲解:大模型 RAG 在 LangChain 中的应用实战

  • 用通俗易懂的方式讲解:ChatGPT 开放的多模态的DALL-E 3功能,好玩到停不下来!

  • 用通俗易懂的方式讲解:基于扩散模型(Diffusion),文生图 AnyText 的效果太棒了

  • 用通俗易懂的方式讲解:在 CPU 服务器上部署 ChatGLM3-6B 模型

  • 用通俗易懂的方式讲解:ChatGLM3-6B 部署指南

  • 用通俗易懂的方式讲解:使用 LangChain 封装自定义的 LLM,太棒了

  • 用通俗易懂的方式讲解:基于 Langchain 和 ChatChat 部署本地知识库问答系统

  • 用通俗易懂的方式讲解:Llama2 部署讲解及试用方式

  • 用通俗易懂的方式讲解:一份保姆级的 Stable Diffusion 部署教程,开启你的炼丹之路

  • 用通俗易懂的方式讲解:LlamaIndex 官方发布高清大图,纵览高级 RAG技术

  • 用通俗易懂的方式讲解:为什么大模型 Advanced RAG 方法对于AI的未来至关重要?

  • 用通俗易懂的方式讲解:基于 Langchain 框架,利用 MongoDB 矢量搜索实现大模型 RAG 高级检索方法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1907727.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

算法学习笔记(8)-动态规划基础篇

目录 基础内容: 动态规划: 动态规划理解的问题引入: 解析:(暴力回溯) 代码示例: 暴力搜索: Dfs代码示例:(搜索) 暴力递归产生的递归树&…

easily-openJCL 让 Java 与显卡之间的计算变的更加容易!

easily-openJCL 让 Java 与显卡之间的计算变的更加容易! 开源技术栏 本文介绍了关于在 Java 中 easily-openJCL 的基本使用!!! 目录 文章目录 easily-openJCL 让 Java 与显卡之间的计算变的更加容易!目录 easily-op…

【ARMv8/v9 GIC 系列 2.4 -- GIC SGI 和 PPI 中断的启用配置】

请阅读【ARM GICv3/v4 实战学习 】 文章目录 GIC SGI 和 PPI 中断的使能配置GICR_ISENABLER0 操作使用举例SummaryGIC SGI 和 PPI 中断的使能配置 GICR_ISENABLER0寄存器(中断设置-使能寄存器0)用于启用相应的SGI(软件生成中断)或PPI(专用外设中断)向CPU接口的转发。每个…

Vue3中drawer组件无法重新回显数据

不做drawer的时候数据是可以正常回显的,点击详情id是正常传值的,但是使用了drawer组件以后发现只会调用一次详情功能,以后不管点击哪条信息都不会刷新信息永远都是第一条的信息,但是id刷新成功了,后来发现是没有加v-if…

HTML5新增的input元素类型:number、range、email、color、date等

HTML5 大幅度地增加与改良了 input 元素的种类,可以简单地使用这些元素来实现 HTML5 之前需要使用 JavaScript 才能实现的许多功能。 到目前为止,大部分浏览器都支持 input 元素的种类。对于不支持新增 input 元素的浏览器,input 元素被统一…

数据库容灾 | MySQL MGR与阿里云PolarDB-X Paxos的深度对比

开源生态 众所周知,MySQL主备库(两节点)一般通过异步复制、半同步复制(Semi-Sync)来实现数据高可用,但主备架构在机房网络故障、主机hang住等异常场景下,HA切换后大概率就会出现数据不一致的问…

动感剧场设计师:打造流畅而生动的三维动画和特效

三维画图软件是设计领域必不可少的工具,它可以创建非常精确的三维模型,能够帮助设计师直观感受产品的外观,随时进行编辑和调整。与传统的三维画图软件相比,的三维画图软件无需进行安装步骤,节省时间又节省内存。本文将…

docker安装以及简单使用

如何安装安装 yum install -y yum-utils yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo # 列出可用的版本 yum list docker-ce.x86_64 --showduplicates | sort -r yum install -y docker-ce-23.0.6-1.el8 #开机自动启动 …

高创新 | CEEMDAN-VMD-GRU-Attention双重分解+门控循环单元+注意力机制多元时间序列预测

目录 效果一览基本介绍模型设计程序设计参考资料 效果一览 基本介绍 高创新 | CEEMDAN-VMD-GRU-Attention双重分解门控循环单元注意力机制多元时间序列预测 本文提出一种基于CEEMDAN 的二次分解方法,通过样本熵重构CEEMDAN 分解后的序列,复杂序列通过VMD…

BFS:边权相同的最短路问题

一、边权相同最短路问题简介 二、迷宫中离入口最近的出口 . - 力扣&#xff08;LeetCode&#xff09; class Solution { public:const int dx[4]{1,-1,0,0};const int dy[4]{0,0,1,-1};int nearestExit(vector<vector<char>>& maze, vector<int>& e…

思路打开!腾讯造了10亿个角色,驱动数据合成!7B模型效果打爆了

世界由形形色色的角色构成&#xff0c;每个角色都拥有独特的知识、经验、兴趣、个性和职业&#xff0c;他们共同制造了丰富多元的知识与文化。 所谓术业有专攻&#xff0c;比如AI科学家专注于构建LLMs,医务工作者们共建庞大的医学知识库&#xff0c;数学家们则偏爱数学公式与定…

p11函数和递归

递归与迭代 求n的阶乘。&#xff08;不考虑溢出&#xff09; int Fac1(int n) {int i0;int ret1;for(i1;i<n;i){ret*i;}return ret; } int main(){//求n的阶乘int n0;int ret0;scanf("%d",&n);retFac1(n);printf("%d\n",ret);return 0; } int Fac…

一.2.(5)共射、共集、共基三种基本放大电路的静态及动态分析;

共什么的问题&#xff1a;共什么取决于输入输出&#xff0c;共剩下的那一极 1.基本共射放大电路 见前面章节&#xff0c;不做累述 2.基本共集放大电路 列KVL方程&#xff0c;求解 AU1&#xff0c;所以又叫射极跟随器 Ib是流入基极的电流&#xff0c;Ii是从输入交流信号源流出的…

昇思25天学习打卡营第11天|文本解码原理-以MindNLP为例

文本解码原理-以MindNLP为例 这篇主要讲讲文本生成的几个方法&#xff0c;首先介绍一下什么是自回归语言模型。 自回归语言模型 autoregressive language model&#xff0c;根据前面的词或上下文&#xff0c;生成后续的词或句子的语言模型。 有几种典型的自回归语言模型&…

python爬虫入门(三)之HTML网页结构

一、什么是HTML 1、网页的三大技术要素&#xff1a; HTML定义网页的结构和信息&#xff08;骨架血肉&#xff09;CSS定义网页的样式&#xff08;衣服&#xff09;JavaScript定义用户和网页的交互逻辑&#xff08;动作&#xff09; 2、一个最简单的HTML&#xff1a;用<>…

动态数据库设计

动态数据库设计是一种灵活的方法&#xff0c;用于构建能够适应不断变化的数据需求的数据库结构。它强调在不频繁修改数据库表结构的前提下&#xff0c;有效管理和存储多样化的数据。以下是实现动态数据库设计的一些关键技术点和策略&#xff1a; 实体-属性-值&#xff08;EAV&a…

意得辑ABSJU202优惠15%啦,新用户注册直减哦

不得不说&#xff0c;还得是意得辑&#xff0c;钱不白花&#xff0c;润色的挺好~ 第一篇SCI终于成功见刊&#xff01;&#xff01;&#xff01; 都来接accept&#xff01;&#xff01;&#xff01;谢谢accept小狗&#xff0c;接accept 求求accept小狗&#xff0c;真的想要双证毕…

OpenLayers对要素进行新增绘制、选择、修改等交互操作

1、绘制-Draw 新建一个用来绘制要素的图层&#xff1a; const vector new VectorLayer({source: new VectorSource(),style: {"fill-color": "rgba(255, 255, 255, 0.2)","stroke-color": "#ffcc33","stroke-width": 2,&q…

如何提升美国Facebook直播的整体体验?

Facebook作为全球最大的社交媒体平台之一&#xff0c;提供了直播功能&#xff0c;用户可以实时分享生活、见解和创意。许多商家通过美国Facebook直播来获取更多客户&#xff0c;但直播时可能会遇到网络卡顿的问题&#xff0c;导致观看体验不佳。本文将探讨如何解决这个问题&…

Ubuntu开源软件LibreOffice将Excel多表转PDF多目录示例

一、实现的起因&#xff1a; Windows平台下&#xff0c;常见的WPS办公自动化套件中电子表格软件&#xff0c;其中具备将Excel工作表中数据转为PDF文档表格的功能。现在进一步的需求是&#xff1a;像PDF标准的电子书那样&#xff0c;具备一本书的目录结构或章节结构&#xff0c…