【数据分析】Pandas_DataFrame读写详解:案例解析(第24天)

news2024/12/23 11:12:48

系列文章目录

一、 读写文件数据
二、df查询数据操作
三、df增加列操作
四、df删除行列操作
五、df数据去重操作
六、df数据修改操作


文章目录

  • 系列文章目录
  • 前言
    • 一、 读写文件数据
      • 1.1 读写excel文件
      • 1.2 读写csv文件
      • 1.3 读写mysql数据库
    • 二、df查询数据操作
      • 2.1 查询df子集基本方法
      • 2.2 loc/iloc获取子集
        • 2.2.1 loc/iloc基本介绍
        • 2.2.2 loc属性获取子集
        • 2.2.3 iloc属性获取子集
      • 2.3 query函数获取子集
      • 2.4 isin函数获取子集
    • 三、df增加列操作
    • 四、df删除行列操作
    • 五、df数据去重操作
    • 六、df数据修改操作
      • 6.1 直接修改数据
      • 6.2 replace函数修改
      • 6.3 s对象通过apply函数执行自定义函数
      • 6.4 df对象通过apply函数执行自定义函数
      • 6.5 df对象通过applymap函数执行自定义函数


前言

本文主要详解了Pandas_DataFrame的读写。


提示:以下是本篇文章正文内容,下面案例可供参考

一、 读写文件数据

可以参考pandas的官网文档 https://pandas.pydata.org/

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

1.1 读写excel文件

  • 数据保存到excel文件

    # 导入模块
    import pandas as pd
    # 构造数据集
    data = [[1,'张三', '1990-10-02', 34],
            [2, '李四', '2000-03-03', 24],
            [3, '王五', '2005-12-23', 19],
            [4, '隔壁老王', '1982-11-12',42]]
    df = pd.DataFrame(data=data, columns=['id', 'name', 'birthday', 'age'])
    df
    # 存储路径
    # sheet名称
    # 是否存储行索引作为一列
    # 是否存储列名
    df.to_excel('./output/student.xls', sheet_name='student',index=True, header=True)
    
  • 读取excel文件数据

    df_excel = pd.read_excel('output/student.xls')
    df_excel
    # 通过index_col指定某列的值作为行索引, 可以写列名或列下标值
    # pd.read_excel('output/student.xls',index_col='id')
    pd.read_excel('output/student.xls',index_col=0)
    

1.2 读写csv文件

  • 数据保存到csv(逗号,分隔符)/tsv(制表符\t分隔符)文件中

    # 参数1:存储路径
    # index:是否存储行索引值
    # mode:存储的方式
    df.to_csv('output/student.csv', index=False, mode='w')
    # 存储到tsv文件中 \t
    # sep:指定列值之间的分隔符 
    df.to_csv('output/student.tsv', sep='\t')
    
  • 读取csv/tsv文件数据

    df_csv = pd.read_csv('output/student.csv')
    df_csv
    # parse_dates: 将指定的列转换成日期时间类型, 可以传入列名或列下标值
    # temp_df = pd.read_csv('output/student.csv', parse_dates=['birthday'])
    # temp_df = pd.read_csv('output/student.csv', parse_dates=[2])
    # parse_dates: 可以传入True或False, 将行索引值转换成日期时间类型, 需要和行索引值进行结合使用
    temp_df = pd.read_csv('output/student.csv',index_col='birthday' ,parse_dates=True)
    temp_df.info()
    # 读取tsv文件数据
    pd.read_csv('output/student.tsv', sep='\t', index_col=0)
    

1.3 读写mysql数据库

  • 保存数据到mysql数据库

    from sqlalchemy import create_engine
    # 创建数据库链接对象
    engine = create_engine('mysql+pymysql://root:123456@192.168.88.100:3306/BI_db')
    # name:表名, 表不存在会自动创建
    # con:数据库链接对象
    # index:是否存储行索引
    # if_exists:存储方式, append:追加写 replace:覆盖写
    df.to_sql(name='student', con=engine, index=False, if_exists='append')
    
  • 读取mysql数据库数据

    # sql:可以读取表名, 也可以读取sql语句
    # columns: 指定读取表中的字段
    df_mysql = pd.read_sql(sql='student', con=engine, columns=['name', 'birthday'])
    df_mysql
    # 读取sql语句
    pd.read_sql(sql='select * from student limit 2', con=engine)
    # 只能读取sql语句
    pd.read_sql_query(sql='select * from student limit 2;',con=engine)
    # 只能读取表名
    pd.read_sql_table(table_name='student', con=engine)
    

二、df查询数据操作

2.1 查询df子集基本方法

  • head()&tail()

    import pandas as pd
    # 加载数据集, 链家租房数据集
    df = pd.read_csv('data/LJdata.csv')
    df
    df.head()
    df.tail()
    df.head(n=8)
    
  • 获取一列或多列数据

    # df[列名]或df.列名
    # 获取一列数据, 返回s对象
    df['价格']
    type(df['价格'])
    df.价格
    # 获取一列数据, 返回df对象
    df[['价格']]
    # 获取多列数据 df[[列名1, 列名2, ...]]
    # 传入列名的列表
    df[['区域', '面积', '价格']]
    
  • 布尔值向量获取行数据

    # 布尔值s对象 df['价格']>8000
    df[df['价格']>8000]
    # 布尔值列表
    df_head = df.head()
    df_head
    # 构建布尔值列表
    bool_list = [True,False,True,False,True]
    df_head[bool_list]
    # 布尔值数组
    import numpy as np
    n1 = np.array([True,False,True,False,True])
    n1
    df_head[n1]
    
  • 行索引下标切片获取行数据

    # df[起始行下标值:结束行下标值:步长]  类似于字符串/列表/元组的切片操作
    # 下标值(只能是整数)和索引值(整数,字符串,日期时间)不是一个东西
    # 左闭右开 -> 包含起始值, 不包含结束值
    temp_df = df.head(10)
    temp_df
    # 获取1,3,5行数据
    temp_df[:5:2]
    # 获取前3行数据
    temp_df[:3]
    # 步长为负数, 倒序获取行数据, 下标值可以为负数
    temp_df[-1:-3:-1]
    

2.2 loc/iloc获取子集

2.2.1 loc/iloc基本介绍

loc和iloc是s/df对象的属性

loc是通过索引值(肉眼看到的值), iloc是通过索引下标值(0,1,2,3…) 获取数据

df.loc[行索引值] -> 获取行数据

df.loc[行索引值, 列名] -> 获取行列数据

df.iloc[行索引下标] -> 获取行数据

df.iloc[行索引下标, 列名下标] -> 获取行列数据

2.2.2 loc属性获取子集
# 获取一行数据 df[行索引值]
# 获取第5行数据, 返回s对象
temp_df.loc[4]
# 获取第5行数据, 返回df对象
temp_df.loc[[4]]
# 获取多行数据 df[[行索引值1, 行索引值2, ...]]
# 获取第1, 3, 5行数据
temp_df.loc[[0, 2, 4]]
# 行索引值切片获取行数据
# df.loc[起始索引值:结束索引值:步长]
# 左闭右闭 -> 包含起始值, 包含结束值
# 获取第2,3,4行数据
temp_df.loc[1:3]
# 根据索引下标值
temp_df[1:3]
# 隔一行获取一行数据
temp_df.loc[::2]
# 倒序获取子集, 起始值和结束值要反过来, 步长为负数
temp_df.loc[8:2:-1]
# 布尔值向量获取行数据 df.loc[布尔值向量]
temp_df['朝向']=='南'
temp_df.loc[temp_df['朝向']=='南']
# 布尔值向量结合列名获取行列数据 df.loc[布尔值向量, [列名1, 列名2, ...]]
temp_df.loc[temp_df['朝向']=='南', ['地址', '朝向']]
# 行索引值结合列名获取行列数据 df.loc[[行索引值1, 行索引值2,...],[列名1, 列名2, ...]]
# 获取某个值数据
temp_df.loc[0, '价格']
# 获取多行多列数据
temp_df.loc[[0, 2, 4], ['地址', '户型', '价格']]
# 行索引值切片结合列名获取行列数据 df.loc[起始索引值:结束索引值:步长, [列名1, 列名2, ...]]
temp_df.loc[:4:2, ['地址', '面积', '价格']]
2.2.3 iloc属性获取子集
# 获取一行数据 df.iloc[行下标值]
# 获取第一行数据, 返回s对象
temp_df.iloc[0]
temp_df.iloc[[0]]
# 获取最后一行数据
temp_df.iloc[-1]
# 获取多行数据 df.iloc[[行下标1, 行下标2, ...]]
temp_df.iloc[[0, 2, 4]]
# 行下标切片获取多行数据 df.iloc[起始下标值:结束下标值:步长] 等同于 df[起始下标值:结束下标值:步长]
# 左闭右开
temp_df.iloc[:5:2]
temp_df[:5:2]
# 行列下标切片获取子集 df.iloc[起始下标值:结束下标值:步长, 起始列下标值:结束列下标值:步长]
# 获取1,3,5行, 并且获取地址,面积和朝向列
temp_df.iloc[:5:2, 1:6:2]
# 行下标切片和列下标值获取子集 df.iloc[起始下标值:结束下标值:步长, [列下标1, 列下标2, ...]]
# 获取1,3,5行, 并且获取地址,面积和朝向列
temp_df.iloc[:5:2, [1, 3, 5]]
# 行列下标值获取子集 df.iloc[[行下标值1, 行下标值2, ...], [列下标值1, 列下标值2, ...]]
# 获取1,3,5行, 并且获取地址,面积和朝向列
temp_df.iloc[[0, 2, 4], [1, 3, 5]]
# 行下标值和列下标切片获取子集 df.iloc[[行下标值1, 行下标值2, ...], 起始列下标值:结束列下标值:步长]
# 获取1,3,5行, 并且获取地址,面积和朝向列
temp_df.iloc[[0,2,4],1:6:2]

2.3 query函数获取子集

# df.query(判断表达式) -> 判断表达式和df[布尔值向量]相同
# 获取区域列中为 望京租房 的数据
temp_df['区域'] == '望京租房'
temp_df[temp_df['区域'] == '望京租房']
# sql语句  select * from 表a where 区域 == "望京租房"
temp_df.query('区域 == "望京租房"')
# 判断表达式中有多个判断条件, 可以使用 and(&)或or(|)
# 查询租房区域为望京、天通苑、回龙观并且朝向为东、南的房源数据
# 链式调用, query函数返回新的df, 新的df继续可以调用query()
temp_df.query('区域 in ("望京租房", "天通苑租房", "回龙观租房")').query('朝向 in ("东", "南")')
temp_df.query('(区域 in ("望京租房", "天通苑租房", "回龙观租房")) & (朝向 in ("东", "南"))')
# temp_df.query('(区域 in ("望京租房", "天通苑租房", "回龙观租房")) and (朝向 in ("东", "南"))')

temp_df[((temp_df["区域"]=='望京租房') | (temp_df['区域']=='天通苑租房') | (temp_df['区域']=='回龙观租房')) & 
        ((temp_df['朝向']=='东') | (temp_df['朝向']=='南'))]

2.4 isin函数获取子集

# 判断s或df对象中的数据值是否在values列表中, 如果在返回True, 否则返回False -> s/df.isin(values=[值1, 值2, ...])
# 返回一个布尔值构成的df对象
temp_df.isin(values=['2室1厅','东'])
temp_df[temp_df.isin(values=['2室1厅','东'])]
# 返回布尔值构成的s对象
temp_df['区域'].isin(values=["望京租房", "天通苑租房", "回龙观租房"])
temp_df['区域'][temp_df['区域'].isin(values=["望京租房", "天通苑租房", "回龙观租房"])]
temp_df[temp_df['区域'].isin(values=["望京租房", "天通苑租房", "回龙观租房"])]
# 查询租房区域为望京、天通苑、回龙观并且朝向为东、南的房源数据
temp_df['区域'].isin(values=["望京租房", "天通苑租房", "回龙观租房"]) & temp_df['朝向'].isin(values=['东', '南'])
temp_df[(temp_df['区域'].isin(values=["望京租房", "天通苑租房", "回龙观租房"])) & (temp_df['朝向'].isin(values=['东', '南']))]

三、df增加列操作

# 导入模块
import pandas as pd
import warnings
warnings.filterwarnings('ignore')  # 忽略警告信息
# 加载数据集
df = pd.read_csv('data/LJdata.csv')
# 获取前5行数据
temp_df = df.head().copy()
temp_df
# 在df末尾增加新列数据 df['新列名'] = 常数值/列表/series对象
# 在df末尾新增一列省份列, 值都为北京 -> 常数值
temp_df['省份'] = '北京'
temp_df
# 在df末尾新增一列区县列, 值为['朝阳区', '朝阳区', '西城区', '昌平区', '朝阳区'] -> 列表
# df的行数要和新增列表中的元素个数要相等
temp_df['区县'] = ['朝阳区', '朝阳区', '西城区', '昌平区', '朝阳区']
temp_df
# 在df末尾新增一列新价格列, 在原价格上加1000 -> series对象 (s对象的运算)
temp_df['新价格'] = temp_df['价格'] + 1000
temp_df
# 通过insert()在指定位置新增一列
# df.insert(loc=列下标值, column=新列名, value=常数值/列表/s对象)
# 在区域和地址列之间新增一列国家列, 值都为中国
temp_df.insert(loc=1, column='国家', value='中国')
temp_df
# 在价格新增一列价格2列, 值为 价格和新价格的求和
temp_df.insert(loc=6, column='价格2', value=temp_df['价格'] + temp_df['新价格'])
temp_df

四、df删除行列操作

# df.drop(labels=, axis=, inplace=)
# labels: 根据 行索引值或列名 进行删除
# axis: 按行或列删除, 默认是按行 0或index; 按列 1或columns
# inplace: 是否在源数据集上删除, 默认是False, True
# 删除第1, 3, 5行数据, 默认删除行数据
drop_df = temp_df.drop(labels=[0, 2, 4])
drop_df
# 删除价格2列数据
temp_df.drop(labels='价格2', axis='columns')
# 在源df上删除价格2列数据
temp_df.drop(labels='价格2', axis=1, inplace=True)
# 保留地址, 户型, 面积三列数据
temp_df[['地址', '户型', '面积']]

五、df数据去重操作

# s/df.drop_duplicates(subset=,keep=,inplace=)
# subset: 默认不写, 所有列值都相同的行数据; 可以通过列名列表指定对应列相同的行数据
# keep: 默认保留第一条数据 first, 保留最后一条数据 last, 删除所有重复数据 false
# inplace: 是否在源数据集上修改
# 根据所有列相同的行数据进行去重
temp_df.drop_duplicates()
# 根据户型和朝向列判断是否有重复行数据
# 默认保留第一条重复数据
temp_df.drop_duplicates(subset=['户型', '朝向'])
# 保留最后一条重复数据
temp_df.drop_duplicates(subset=['户型', '朝向'], keep='last')
# 删除重复的数据
temp_df['朝向'].drop_duplicates(keep=False)
# df对象没有unique操作
temp_df['朝向'].unique() # 返回数组
temp_df['朝向'].nunique()  # 去重计数 count(distinct)

六、df数据修改操作

6.1 直接修改数据

# 直接修改数据值 df[列名] = 新值 -> 常数值/列表/s对象
temp_df = df.head().copy()
temp_df
# 修改看房人数列, 改为 100
temp_df['看房人数'] = 100
temp_df
# 修改面积列, 改为 [70, 99, 90, 120, 80] -> df的行数和列表中的元素个数相同
temp_df['面积'] = [70, 99, 90, 120, 80]
temp_df
# 修改价格列, 价格列+1000
temp_df['价格'] = temp_df['价格'] + 1000
temp_df
# 获取s对象
temp_s = temp_df['价格']
temp_s# s[索引下标值] = 新值
temp_s[2] = 20000
temp_s

6.2 replace函数修改

# 通过replace函数实现修改
# s/df.replace(to_replace=, value=, inplace=)
# to_replace:需要替换的值
# value:替换后的值
# 将2室1厅替换成3室2厅
temp_df.replace(to_replace='2室1厅', value='3室2厅', inplace=True)
temp_df
temp_df.replace(to_replace=[20000, 100], value=999)
# 对s对象实现替换操作
temp_df['朝向'].replace(to_replace='东南', value='北')

6.3 s对象通过apply函数执行自定义函数

temp_df = df.head().copy()
temp_df
# 编写自定义函数 根据区域列的值判断是否为天通苑租房, 是返回昌平区, 否返回其他区
# 最少接受一个形参, 形参对应的实参值是s对象中每个值
def func1(x):
    print('x的值是->',x)
    if x == '天通苑租房':
        return '昌平区'
    else:
        return '其他区'
# 通过apply函数调用自定义函数 s/df.apply(自定义函数名)
temp_df['区域'] = temp_df['区域'].apply(func1)
temp_df
temp_df = df.head().copy()
temp_df
# 定义自定义函数式, 可以定义多个形参
def func2(x, arg1, arg2):
#     print('x的值是->', x)
#     print('arg1的值是->', arg1)
#     print('arg2的值是->', arg2)
    if x == '天通苑租房':
        return arg1
    else:
        return arg2
# s对象调用自定义函数
# args=(arg1, arg2)
temp_df['区域'].apply(func2, args=('昌平区', '其他区'))
# 形参名=实参值
temp_df['区域'].apply(func2, arg1='昌平区', arg2='其他区')

6.4 df对象通过apply函数执行自定义函数

  • 按列计算

    # df对象调用apply函数来执行自定义函数
    # 自定义函数接收的是df中一列或一行数据
    # 定义自定义函数
    def func3(x, arg1):
        # x是df中一行或一列数据 -> s对象
        print('x的值是->', x)
        print('arg1的值是->', arg1)
        print(x.__dict__)
        # _name:获取当前列的列名, 或者是获取当前行的行索引值
        if x._name == '价格':
            # s对象和数值型变量计算
            return x + arg1
        else:
            return x
        
    # 默认是按列进行处理 axis=0
    # temp_df.apply(func3, args=(1000,), axis=0)
    temp_df.apply(func3, arg1 = 2000, axis=0)
    
  • 按行计算

    # 如果区域列的值为望京租房, 修改价格列的值为arg1
    # 自定义函数
    def func4(x, arg1):
        print('x的值是->', x)
        # 根据s对象的索引值获取数据值 s[索引值]
        if x['区域']== '望京租房':
            x['价格'] = arg1
            return x
        else:
            return x
    
    # 按行进行处理, axis=1
    temp_df.apply(func4, arg1=3000, axis=1)
    

6.5 df对象通过applymap函数执行自定义函数

# df对象调用applymap函数来执行自定义函数
# 自定义函数中接收的是df中每个值, 不再是一列或一行数据
# 自定义函数
def func5(x):
    print('x的值是->', x)
    if x in ['燕莎租房','望京租房','团结湖租房']:
        return '朝阳区'
    elif x == '天通苑租房':
        return '昌平区'
    elif x == '团结湖租房':
        return '西城区'
    else:
        return x
    
temp_df.applymap(func5)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1906080.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

移动UI: 什么特征会被认为是简洁风格,用案例告诉你

什么是简洁风格,恐怕一百个人有一百个是理解,本文通过理论分析案例的方式进行探讨。 移动 UI 中的简洁风格通常具有以下几个特征: 1. 平面化设计: 简洁风格的移动 UI 善于运用平面化设计,即去除过多的阴影、渐变和立…

一家互联网 Web3 研发团队繁忙的一天

早晨:规划与准备 7:00 AM - 起床与新闻 Web3研发团队的成员们早起,通过区块链相关的新闻网站、论坛和社交媒体,了解最新的行业动态和技术发展。重点关注去中心化金融(DeFi)、NFT、DAO等领域的最新进展。 8:00 AM - …

Java | Leetcode Java题解之第219题存在重复元素II

题目&#xff1a; 题解&#xff1a; class Solution {public boolean containsNearbyDuplicate(int[] nums, int k) {Set<Integer> set new HashSet<Integer>();int length nums.length;for (int i 0; i < length; i) {if (i > k) {set.remove(nums[i - …

✅深入理解InnoDB中的页分裂与页合并

想要了解什么是页分裂&#xff0c;页合并&#xff0c;那么就要想知道 InnoDB 中的数据页是什么。 InnoDB 的数据页 InnoDB 的数据页是存储引擎中用于保存数据的基本单位。每个数据页是磁盘上的一个连续区域&#xff0c;通常大小为 16KB&#xff0c;当然&#xff0c;这个大小可…

map和set的原理、优劣势、应用场景和示例代码,统统告诉你。

map和set的原理都是基于哈希表实现的&#xff0c;通过哈希值来快速查找和插入元素&#xff0c;从而实现高效的数据存储和管理&#xff0c;那么他们之间有什么不同呢&#xff0c;该如何选择&#xff0c;本文带你了解。 一、map和set的原理 map和set都是数据结构&#xff0c;用…

新浪API系列:微博API探索社交数据价值(1)

微博API为创作者和开发者提供了一个探索社交数据价值的宝贵机会&#xff0c;助力他们在创新发展中取得成功。通过微博API&#xff0c;用户可以轻松访问和获取微博平台上丰富的社交数据。这些数据包括用户信息、关注列表、粉丝互动等&#xff0c;为创作者和开发者提供了深入了解…

基于CesiumJs的可视化大屏,效果不是一般的震撼。

CesiumJS是一个用于创建三维地理信息系统&#xff08;GIS&#xff09;应用程序的开源JavaScript库。它提供了强大的地理空间数据可视化和交互功能&#xff0c;可以用于构建虚拟地球、地图、飞行模拟等应用。 1. 三维地理空间可视化&#xff1a; CesiumJS支持将地理空间数据以三…

【紫外线发光器件小结】 UV-B LED 308nm

之前有介绍光的波长和频率计算。 波长小于390nm,频率高于770太赫兹的电磁波忙&#xff0c;或者光。基本有一段就叫做紫外线。 紫外线有分为UV-A/B/C;三小段&#xff1b; 如下图&#xff1a; 高压汞灯与UV LED的光谱&#xff1b;黑色线汞灯&#xff0c;蓝色LED

CentOS 安装 annie/lux,以及 annie/lux 的使用

annie 介绍 如果第一次听到 annie 想必都会觉得陌生&#xff0c;annie 被大家称为视频下载神器&#xff0c;annie 作者介绍说可以下载抖音、哔哩哔哩、优酷、爱奇艺、芒果TV、YouTube、Tumblr、Vimeo 等平台的视频。 githup&#xff1a;https://github.com/pingf/annie 支持…

HTML5实现我的音乐网站源码

文章目录 作者&#xff1a;[xcLeigh](https://blog.csdn.net/weixin_43151418) 1.设计来源1.1 界面效果1.2 轮播图界面1.3 音乐播放界面1.4 视频播放界面 2.效果和源码2.1 动态效果2.2 源代码 源码下载万套模板&#xff0c;程序开发&#xff0c;在线开发&#xff0c;在线沟通 作…

Spark 分布式弹性计算集(RDD)相关概念介绍

目录 一、概述 二、RDD的核心概念 2.1 Partition 2.2 Partitioner 2.3 RDD的依赖关系 2.4 Stage 2.5 PreferredLocation 2.6 CheckPoint 三、RDD的持久化 3.1 概述 3.2 概念 3.3 RDD持久化级别 3.3.1 MEMORY_ONLY 3.3.2 MEMORY_AND_DISK 3.3.3 MEMORY_ONLY_SER …

份及恢复Sonarqube服务数据

基础数据&#xff1a; 源数据机ip&#xff1a;192.*.53 测试机ip&#xff1a;192.*.65 Sonarqube访问地址&#xff1a;http://192.*.65:9000/ 账户名&#xff1a;admin 密码&#xff1a;123456 数据库postgres&#xff1a; 版本&#xff1a;PostgreSQL 15.3 一、数据备份…

不同层数PCB如何选择合适板厚?

在回答这个问题前&#xff0c;我们首先需要了解什么是PCB厚度。 PCB厚度是指电路板完成后的厚度。 覆铜板的厚度&#xff1a;0.5、0.7、0.8、1.0、1.2、1.5、1.6、2.0、2.4、3.2和6.4毫米。 纸基覆铜板的标称厚度为 0.7 至 1.5 毫米。让我们开始了解更多细节。 标准 PCB 铜厚度…

2014-2022年审计师能力与专长

审计师在确保企业财务透明度和增强市场信心方面扮演着关键角色。以下是对审计师能力与专长数据的介绍&#xff1a; 数据简介 定义&#xff1a;审计师是独立、客观、合法地对组织进行财务状况、经营绩效和风险水平评估的专业人员。目的&#xff1a;通过收集和评估证据&#xf…

数据库开发:mysql基础一

文章目录 数据库开发Day15&#xff1a;MySQL基础&#xff08;一&#xff09;一、MySQL介绍与安装【1】MySQL介绍&#xff08;5&#xff09;启动MySQL服务&#xff08;6&#xff09;修改root登陆密码 二、SQL简介三、数据库操作四、数据表操作4.1、数据库数据类型4.2、创建数据表…

pnpm介绍

PNPM 是一个 JavaScript 包管理器&#xff0c;类似于 npm 和 Yarn。它的全称是 "Performant npm"&#xff0c;主要设计目标是优化包的安装和管理过程&#xff0c;以提升速度和效率。PNPM 的主要特点包括&#xff1a; 符号链接&#xff08;Symlink&#xff09;&#x…

【SOLID原则前端中的应用】接口隔离原则(Interface Segregation Principle,ISP)- vue3示例

接口隔离原则&#xff08;Interface Segregation Principle&#xff0c;ISP&#xff09;在Vue 3中的应用 接口隔离原则&#xff08;Interface Segregation Principle&#xff0c;ISP&#xff09;规定&#xff0c;客户端不应该被迫依赖于它不使用的方法。 换句话说&#xff0c;…

【Python】已解决:SyntaxError: positional argument follows keyword argument

文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决&#xff1a;SyntaxError: positional argument follows keyword argument 一、分析问题背景 在Python编程中&#xff0c;当我们在调用函数时混合使用位置参数&#xff08;p…

运维必会 掌握 Vim:从入门到精通

前言 Vim 是一个强大的文本编辑器&#xff0c;以其高效的编辑操作和强大的可定制性著称。无论你是编程新手还是经验丰富的开发者&#xff0c;Vim 都能帮助你提高工作效率。本文将带你深入了解 Vim&#xff0c;从基本操作到高级配置&#xff0c;逐步掌握。 一、基本操作 1. 模…

电力设备巡检管理系统

电力设备巡检管理系统是一种基于计算机技术和网络通信技术的智能化管理系统&#xff0c;旨在提高电力设备巡检的效率、准确性和安全性。以下是对该系统的详细介绍&#xff1a; 一、系统概述 电力设备巡检管理系统通过实时采集、传输和分析电力设备的数据&#xff0c;帮助电力企…