大纲
- 新建工程
- 自定义无界流
- 使用
- 打包、提交、运行
在《Java版Flink使用指南——从RabbitMQ中队列中接入消息流》一文中,我们让外部组件RabbitMQ充当了无界流的数据源,使得Flink进行了流式处理。在《Java版Flink使用指南——将消息写入到RabbitMQ的队列中》一文中,我们使用了Flink自带的数据生成器,生成了有限数据,从而让Flink以批处理形式运行了该任务。
本文我们将自定义一个无界流生成器,以方便后续测试。
新建工程
我们新建一个名字叫UnboundedStreamGenerator的工程。
Archetype:org.apache.flink:flink-quickstart-java
版本:1.19.1
自定义无界流
新建src/main/java/org/example/generator/UnBoundedStreamGenerator.java
然后UnBoundedStreamGenerator实现RichSourceFunction接口
public abstract class RichSourceFunction<OUT> extends AbstractRichFunction
implements SourceFunction<OUT> {
private static final long serialVersionUID = 1L;
}
主要实现SourceFunction接口的run和cancel方法。run方法用来获取获取,cancel方法用于终止任务。
package org.example.generator;
import org.apache.flink.streaming.api.functions.source.RichSourceFunction;
public class UnBoundedStreamGenerator extends RichSourceFunction<Long> {
private volatile boolean isRunning = true;
@Override
public void run(SourceContext<Long> ctx) throws Exception {
long count = 0L;
while (isRunning) {
Thread.sleep(1000); // Simulate delay
ctx.collect(count++); // Emit data
}
}
@Override
public void cancel() {
isRunning = false;
System.out.println("UnBoundedStreamGenerator canceled");
}
}
在run方法中,我们每隔一秒产生一条数据,且这个数字自增。
使用
我们使用addSource方法,将该无界流生成器添加成数据源。然后将其输出到日志。
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.example;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.example.generator.UnBoundedStreamGenerator;
/**
* Skeleton for a Flink DataStream Job.
*
* <p>For a tutorial how to write a Flink application, check the
* tutorials and examples on the <a href="https://flink.apache.org">Flink Website</a>.
*
* <p>To package your application into a JAR file for execution, run
* 'mvn clean package' on the command line.
*
* <p>If you change the name of the main class (with the public static void main(String[] args))
* method, change the respective entry in the POM.xml file (simply search for 'mainClass').
*/
public class DataStreamJob {
public static void main(String[] args) throws Exception {
// Sets up the execution environment, which is the main entry point
// to building Flink applications.
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.addSource(new UnBoundedStreamGenerator()).name("Custom Stream Source")
.setParallelism(1)
.print(); // For demonstration, print the stream to stdout
// Execute program, beginning computation.
env.execute("Flink Java API Skeleton");
}
}
打包、提交、运行
使用下面命令查看日志输出
tail -f log/*
然后我们在后台点击Cancel Job
可以看到输出