STM32第十六课:WiFi模块的配置及应用

news2024/11/25 18:30:29

文章目录

  • 需求
  • 一、WiFi模块概要
  • 二、配置流程
    • 1.配置通信串口,引脚和中断
    • 2.AT指令
    • 3.发送逻辑编写
  • 三、需求实现代码
  • 总结


需求

完成WiFi模块的配置,使其最终能和服务器相互发送消息。
在这里插入图片描述
在这里插入图片描述


一、WiFi模块概要

本次使用的WiFi模块为ESP-12F模块(安信可)
驱动芯片为ESP8266(乐鑫)。
ESP8266的使用:
1.作为mcu开发,再次搭建一下它的环境,开发周期较长。
2.利用官方固件使用AT指令(AT+**)开发。
在这里插入图片描述
芯片引脚:
在这里插入图片描述
通信接口:
在这里插入图片描述

二、配置流程

1.配置通信串口,引脚和中断

配置串口3(本次使用的WiFi模块串口接的是串口3)
默认配置: 波特率115200  8位数据位 0位校验位 1位停止位

配置PB10(TX) PB11(RX)
TX:复用推挽 RX:浮空输入

配置PE6(ESP模块的使能引脚)
高电平使能

void Esp8266_Config()
{
	  //开时钟:GPIOB,USART3
	  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
	  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE,ENABLE);
	  RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3,ENABLE);
	
	    //配置对应的IO口 PB10(tx):复用推挽 PB11(RX):浮空输入
	    GPIO_InitTypeDef GPIO_InitStruct = {0};
		GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;
		GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10;
		GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
		GPIO_Init(GPIOB,&GPIO_InitStruct);
		GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
		GPIO_InitStruct.GPIO_Pin = GPIO_Pin_11;
		GPIO_Init(GPIOB,&GPIO_InitStruct);
		//PE6
		GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP;
		GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6;
	    GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
		GPIO_Init(GPIOE,&GPIO_InitStruct);
		
		
	    //配置串口3  8数据位,0校验位,1停止位,波特率115200
		USART_InitTypeDef USART_InitStruct = {0};//可以通过结构体类型跳转
		USART_InitStruct.USART_BaudRate = 115200;//波特率
		USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//硬件控制流不开
		USART_InitStruct.USART_Mode = USART_Mode_Tx|USART_Mode_Rx;//打开发送和接收
		USART_InitStruct.USART_Parity = USART_Parity_No;
		USART_InitStruct.USART_StopBits = USART_StopBits_1;
		USART_InitStruct.USART_WordLength = USART_WordLength_8b;
		USART_Init(USART3,&USART_InitStruct);
		USART_Cmd(USART3,ENABLE);
        //配置串口3的中断
		USART_ITConfig(USART3,USART_IT_RXNE,ENABLE);//USART1->CR1 |= 0x1<<5;//使能串口1的接收非空中断
		NVIC_SetPriority(USART3_IRQn,7);//设置优先级0~15
		NVIC_EnableIRQ(USART3_IRQn);//使能中断通道
		GPIO_SetBits(GPIOE,GPIO_Pin_6);
	    Delay_nms(500);
}

最后加的延时是为了保证所有配置都配置完。

2.AT指令

在配置中断的发送和接收前,我们要了解一下AT指令。
  AT 命令(AT Commands)最早是由发明拨号调制解调器(MODEM)的贺氏公司(Hayes)为了控制 MODEM 而发明的控制协议。后来随着网络带宽的升级,速度很低的拨号 MODEM 基本退出一般使用市场,但是 AT 命令保留下来。
  在嵌入式开发中,经常是使用AT命令去控制各种通讯模块,比如ESP8266 WIFI模块、4G模块、GPRS模块等等。一般就是主芯片通过硬件接口(比如串口、SPI)发送AT命令给通讯模块,模块接收到数据之后回应响应的数据。
AT指令的分类:
在这里插入图片描述
要注意:基本所有AT指令,结尾必须换行(\r\n)
ESP12F模块的工作模式:STA(连接热点) AP(释放热点) STA+AP
STA模式:模组作为节点去连接热点,然后就可连接某个服务器。
AP模式:模组作为热点,释放网络,可以在模组上创建服务器,其他设备连接他。
该模块的指令:
AT :测试固件的
AT+RST :重启ESP8266
ATE0 :关闭回显
ATE1 :打开回显
AT+CWMODE_DEF(_DEF有些固件支持,有些不支持)=x
x=1为设置工作模式 STA模式(可以连接其他设备热点),2为AP模式,3为组合模式。
AT+CWJAP_DEF=“WIFI名”,“WIFI密码” 连接WIFI。
AT+CWSAP :配置 ESP8266 SoftAP 参数(配置释放的热点) 。
AT+CIPAP :设置 ESP8266 SoftAP 的 IP 地址。
多连接情况下 (AT+CIPMUX=1),才能开启 TCP 服务器。
AT+CIPSERVER :建⽴ TCP 服务器
AT+CIPSTART=“TCP”,“IP”,端口号 以TCP的形式连接服务器
AT+CIPMODE=1 : 开启透传 (向wifi发送的所有消息(除+++外)都认为不是指令)
AT+CIPSEND : 启动发送功能
+++ 没有回车 : 退出透传
AT+CIPCLOSE : 退出服务器连接

连接服务器需要那些步骤:
1.连接网络
2.设置位连接热点模式:STA
3.连接热点:名字和密码
4.连接服务器 ip 和 端口
5.收发数据
AT是AT指令还是收发的数据
透传模式(透明传输,所有消息都认为是普通收发的消息)

3.发送逻辑编写

给串口发送命令,可以理解为发送字符串。
为了实现发送字符串,我们先写一个能发送单字节的函数

void Usart3Senddata(uint8_t data)
{
	//等待发送完成
	while(USART_GetFlagStatus(USART3,USART_FLAG_TC)==0);
	//如果上次发送完成,就发送
	USART_SendData(USART3,data);
}

由于字符串的末尾为"\0",我们结合单字节发送函数就能实现字符串的发送。

void U3_SendStr(uint8_t * data)
{
	while(*data!='\0')
	{
		Usart3Senddata(*data);
		data++;
	}
}

一个一个字符发送,发送一个data+1,遇到反斜杠0结束。
为了能够将发送的命令保存起来。
我们先定义一个结构体方便后续操作。

typedef struct{
	uint8_t recvbuf[1024];
	uint16_t recvcnt;//保存命令的条数,起到计数作用,防溢出。
}WIFIDATA;

在这里插入图片描述
此时我们写一个WiFi发送命令的函数 Wifi_Send_Cmd(char * cmd,char * recv,uint32_t timeout)
参数:命令,期待返回值,超时时间
之所以设置超时时间,是因为这些指令的执行都需要时间,反应较慢。

uint8_t Wifi_Send_Cmd(char * cmd,char * recv,uint32_t timeout)
{
	uint32_t timecnt=0;
	memset(&wifidata,0,sizeof(wifidata));//先清空
	U3_SendStr((uint8_t *)cmd);//发送命令
	while(strstr((char *)wifidata.recvbuf,recv)==NULL)
	{
	timecnt++;
	Delay_nms(1);
		if(timecnt>=timeout){
		printf("发送超时失败%s",cmd);
		return 1;
	 }
	}
	printf(" 发送成功 ");
	return 0;
}

其中strstr函数为查询目标字符串种是否有所需字符串,若有则返回所需字符串的地址,没有则返回0。
strstr(目标字符串,所需字符串)

然后就是写IP链接函数了

uint8_t Wifi_ConnectIP(void)
{
	if(Wifi_Send_Cmd("AT\r\n","OK",1000) != 0){//测试
		return 1;
	}
	if(Wifi_Send_Cmd("AT+CWMODE=1\r\n","OK",2000) != 0){//设置为STA
		return 1;
	}
	if(Wifi_Send_Cmd("AT+CWJAP=\"LEGION-5169\",\"88888888\"\r\n","OK",10000)!= 0){//连接热点
		return 1;
	}
	if(Wifi_Send_Cmd("AT+CIPSTART=\"TCP\",\"36.137.226.30\",37233\r\n","OK",10000)!= 0){//连接服务器
		return 1;
	}
	if(Wifi_Send_Cmd("AT+CIPMODE=1\r\n","OK",1000)!= 0){//开启透传
		return 1;
	}
	if(Wifi_Send_Cmd("AT+CIPSEND\r\n","OK",1000)!= 0){//启动发送功能
		return 1;
	}
	return 0;	
}

要注意:"需要反斜杠转义

最后编写串口3和串口1的中断函数:

void USART3_IRQHandler(void)
{
	
	uint8_t data=0;
	if((USART3->SR&0x1<<5)!=0)
	{//执行该中断函数的原因有很多,所以判断一下是不是接收导致的
		data = USART_ReceiveData(USART3);//读操作,同时也是清空中断标志位
		wifidata.recvbuf[wifidata.recvcnt] = data;
		wifidata.recvcnt++;
		wifidata.recvcnt%=1024;
		USART_SendData(USART1, data); 
	}
}
void USART1_IRQHandler(void)
{
	uint8_t data=0;
	if((USART1->SR&0x1<<5)!=0)
	{//执行该中断函数的原因有很多,所以判断一下是不是接收导致的
		//接收数据
		data = USART_ReceiveData(USART1);//读操作,同时也是清空中断标志位
     	USART3->DR = data;//发送数据
		//USART_SendData(USART5, data); 
	}
}

逻辑如下:
串口3先读接收到的数据,然后将数据保存到结构体中,结构体中的计数器++并对1024取余防止溢出,最后将数据发送给串口1。
串口1先读接收到的数据,后将数据发送给串口3。

三、需求实现代码

main.c

#include "stm32f10x.h"
#include "usart.h"
#include "stdio.h"
#include "delay.h"
#include "string.h"
#include "wifi.h"
uint8_t Send_wifidata[102];

int main()
{
	NVIC_SetPriorityGrouping(5);//两位抢占两位次级
    Usart1_Config(); 
	SysTick_Config(72000);
	Esp8266_Config();
    strcpy((char*)Send_wifidata, "hello world");
	Wifi_ConnectIP();
    U3_SendStr(Send_wifidata);
    while(1)
    {	
    }
		return 0;
}

WiFi.c

#include "wifi.h"

WIFIDATA wifidata={0};

//配置串口3  8数据位,0校验位,1停止位,波特率115200
//PB10(TX) PB11(RX)
void Esp8266_Config()
{
	 //开时钟:GPIOB,USART3
	  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
	  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE,ENABLE);
	  RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3,ENABLE);
	
	  //配置对应的IO口 PB10(tx):复用推挽 PB11(RX):浮空输入
	  GPIO_InitTypeDef GPIO_InitStruct = {0};
		GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;
		GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10;
		GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
		GPIO_Init(GPIOB,&GPIO_InitStruct);
		GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
		GPIO_InitStruct.GPIO_Pin = GPIO_Pin_11;
		GPIO_Init(GPIOB,&GPIO_InitStruct);
		//PE6
		GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP;
		GPIO_InitStruct.GPIO_Pin = GPIO_Pin_6;
	    GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
		GPIO_Init(GPIOE,&GPIO_InitStruct);
		
		
	  //配置串口3  8数据位,0校验位,1停止位,波特率115200
		USART_InitTypeDef USART_InitStruct = {0};//可以通过结构体类型跳转
		USART_InitStruct.USART_BaudRate = 115200;//波特率
		USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//硬件控制流不开
		USART_InitStruct.USART_Mode = USART_Mode_Tx|USART_Mode_Rx;//打开发送和接收
		USART_InitStruct.USART_Parity = USART_Parity_No;
		USART_InitStruct.USART_StopBits = USART_StopBits_1;
		USART_InitStruct.USART_WordLength = USART_WordLength_8b;
		USART_Init(USART3,&USART_InitStruct);
		USART_Cmd(USART3,ENABLE);
    //配置串口3的中断
		USART_ITConfig(USART3,USART_IT_RXNE,ENABLE);//USART1->CR1 |= 0x1<<5;//使能串口1的接收非空中断
		NVIC_SetPriority(USART3_IRQn,7);//设置优先级0~15
		NVIC_EnableIRQ(USART3_IRQn);//使能中断通道
		GPIO_SetBits(GPIOE,GPIO_Pin_6);
	    Delay_nms(500);
}

void USART3_IRQHandler(void)
{
	
	uint8_t data=0;
	if((USART3->SR&0x1<<5)!=0)
	{//执行该中断函数的原因有很多,所以判断一下是不是接收导致的
		data = USART_ReceiveData(USART3);//读操作,同时也是清空中断标志位
		wifidata.recvbuf[wifidata.recvcnt] = data;
		wifidata.recvcnt++;
		wifidata.recvcnt%=1024;
		USART_SendData(USART1, data); 
	}
}

//串口5发送单字节函数
void Usart3Senddata(uint8_t data)
{
	//等待发送完成
	while(USART_GetFlagStatus(USART3,USART_FLAG_TC)==0);
	//如果上次发送完成,就发送
	USART_SendData(USART3,data);
}

//串口5发送数组函数
void U3_Sendarr(uint8_t * data,uint32_t len)
{
	uint32_t i=0;
	for(i=0;i<len;i++){
		Usart3Senddata(*data);
		data++;
	}
}

void U3_SendStr(uint8_t * data)
{	
	while(*data!='\0')
	{
		Usart3Senddata(*data);
		data++;
	}
}

uint8_t Wifi_Send_Cmd(char * cmd,char * recv,uint32_t timeout)
{
	uint32_t timecnt=0;
	memset(&wifidata,0,sizeof(wifidata));
	U3_SendStr((uint8_t *)cmd);
	while(strstr((char *)wifidata.recvbuf,recv)==NULL){
	timecnt++;
	Delay_nms(1);
		if(timecnt>=timeout){
		printf("发送超时失败%s",cmd);
		return 1;
	 }
	}
	printf(" 发送成功 ");
	return 0;
}

uint8_t Wifi_ConnectIP(void)
{
	if(Wifi_Send_Cmd("AT\r\n","OK",1000) != 0){//测试
		return 1;
	}
	if(Wifi_Send_Cmd("AT+CWMODE=1\r\n","OK",2000) != 0){//设置为STA
		return 1;
	}
	if(Wifi_Send_Cmd("AT+CWJAP=\"LEGION-5169\",\"88888888\"\r\n","OK",10000)!= 0){//连接热点
		return 1;
	}
	if(Wifi_Send_Cmd("AT+CIPSTART=\"TCP\",\"36.137.226.30\",37233\r\n","OK",10000)!= 0){//连接服务器
		return 1;
	}
	if(Wifi_Send_Cmd("AT+CIPMODE=1\r\n","OK",1000)!= 0){//开启透传
		return 1;
	}
	if(Wifi_Send_Cmd("AT+CIPSEND\r\n","OK",1000)!= 0){//启动发送功能
		return 1;
	}
	return 0;	
}

wifi.h

#ifndef _WIFI_H_
#define _WIFI_H_
#include "stm32f10x.h"
#include "delay.h"
#include "stdio.h"
#include "string.h"
typedef struct{
	uint8_t recvbuf[1024];
	uint16_t recvcnt;
}WIFIDATA;

void Esp8266_Config();
void U3_SendStr(uint8_t * data);
uint8_t Wifi_Send_Cmd(char * cmd,char * recv,uint32_t timeout);
uint8_t Wifi_ConnectIP(void);
void U3_SendStr(uint8_t * data);
#endif
		

总结

1.先看原理图,配串口,引脚和中断。
2.根据发送逻辑进行中断函数的编写。
3.在主函数中调用并按照需求进行实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1903986.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

字符串——string类的常用接口

一、string类对象的常见构造 二、string类对象的容量操作 三、string类对象的访问及遍历操作 四、string类对象的修改操作 一、string类对象的常见构造 1.string() ——构造空的string类对象&#xff0c;也就是空字符串 2.string(const char* s) ——用字符串来初始化stri…

Win10如何设置远程桌面?

远程桌面介绍 远程桌面是一款Windows提供的远程工具&#xff0c;旨在连接同一局域网内的两台计算机。如果您掌握被控端电脑的IP地址&#xff0c;便可直接连接到这台已启用远程桌面的计算机&#xff0c;通过远程桌面进行文件传输或提供远程技术支持。 在同一家公司内&#xff0…

JVM专题之垃圾收集器

JVM参数 3.1.1 标准参数 -version -help -server -cp 3.1.2 -X参数 非标准参数,也就是在JDK各个版本中可能会变动 ``` -Xint 解释执行 -Xcomp 第一次使用就编译成本地代码 -Xmixed 混合模式,JVM自己来决定 3.1.3 -XX参数 > 使用得最多的参数类型 > > 非…

十一、作业

1.从大到小输出 写代码将三个整数数按从大到小输出。 void Swap(int* px, int* py) {int tmp *px;*px *py;*py tmp;} int main() {int a 0;int b 0;int c 0;scanf("%d %d %d", &a, &b, &c);int n 0;if (a<b){Swap(&a, &b);}if (a &l…

vscode配置latex环境制作beamer ppt

vscode配置latex环境制作beamer ppt 文章目录 vscode配置latex环境制作beamer ppt1. 安装Tex Live2. 安装vscode插件3. 测试Reference 写在前面&#xff0c;笔者之前一直使用overleaf来制作beamerppt&#xff0c;但是免费版本会限制编译时间上限&#xff0c;故在本地配置了late…

高级计算机体系结构--期末真题及题型总结

2024 年春季学期期末考题回顾一、名词解释二、简答题2007 年简答题2008 年简答题简答题答案 三、分析题1. MESI 和 Dragon 协议计算给定内存存取序列所需的时钟周期2007年第一题及参考答案例题及解答 2. 顺序一致性存储模型&#xff0c;判断进程的合法输出2007年第二题及参考答…

苍穹外卖 ...待更新

苍穹外卖 1、 阿里云OSS2、菜品分类查询 1、 阿里云OSS 工具类 package com.sky.utils;import com.aliyun.oss.ClientException; import com.aliyun.oss.OSS; import com.aliyun.oss.OSSClientBuilder; import com.aliyun.oss.OSSException; import lombok.AllArgsConstructor…

【每日一练】python三目运算符的用法

""" 三目运算符与基础运算的对比 """ a 1 b 2#1.基础if运算判断写法&#xff1a; if a > b:print("基础判断输出&#xff1a;a大于b") else:print("基础判断输出&#xff1a; a不大于b")#2.三目运算法判断&#xff1a;…

【云原生】Prometheus监控Docker指标并接入Grafana

目录 一、前言 二、docker监控概述 2.1 docker常用监控指标 2.2 docker常用监控工具 三、CAdvisor概述 3.1 CAdvisor是什么 3.2 CAdvisor功能特点 3.3 CAdvisor使用场景 四、CAdvisor对接Prometheus与Grafana 4.1 环境准备 4.2 docker部署CAdvisor 4.2.2 docker部署…

flask使用定时任务flask_apscheduler(APScheduler)

Flask-APScheduler描述: Flask-APScheduler 是一个 Flask 扩展&#xff0c;增加了对 APScheduler 的支持。 APScheduler 有三个内置的调度系统可供您使用&#xff1a; Cron 式调度&#xff08;可选开始/结束时间&#xff09; 基于间隔的执行&#xff08;以偶数间隔运行作业…

洛谷 P3613 学习用map代替大大大数组的好题

题目链接&#xff1a;P3613 【深基15.例2】寄包柜 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题目截图&#xff1a; 题意分析&#xff1a; 非常简单的存入和取出操作 唯一的 “难点” 在于 数组开不到 a[100007][100007]&#xff0c;会暴内存 非常巧妙的引入 map 来解决…

Square Root SAM论文原理

文章目录 Square Root SAM论文原理核心原理SLAM问题的3种表示贝叶斯网络因子图&#xff08;Factor graph&#xff09;马尔科夫随机场(Markov Random Field, MRF) SLAM最小二乘问题&线性化因式分解 factorization矩阵与图(Matrices ⇔ Graphs)因式分解&变量消元(Factori…

深入理解 Kata Containers

目录 引言Kata Containers 的定义Kata Containers 的架构Kata Containers 的工作原理Kata Containers 的应用场景Kata Containers 在 CentOS 上的常见命令实验场景模拟总结 1. 引言 随着云计算和容器技术的迅猛发展&#xff0c;安全性和性能成为了用户关注的焦点。传统容器技…

STM32CubeMX实现4X5矩阵按键(HAL库实现)

为了实现计算器键盘&#xff0c;需要使用4X5矩阵按键&#xff0c;因此&#xff0c;我在4X4矩阵键盘上重新设计了一个4X5矩阵按键。原理图如下&#xff1a; 原理描述&#xff1a; 4X5矩阵按键&#xff0c;可以设置4个引脚为输出&#xff0c;5个引脚为输入模式&#xff0c;4个引…

如何屏蔽搜索结果特定网站?无限添加指定域名屏蔽解决方案

如何通过Chrome插件屏蔽某网站的搜索结果 在使用搜索引擎时&#xff0c;有时我们会希望屏蔽掉某些不想看到的网站。那么&#xff0c;我们可以通过安装油猴&#xff08;Tampermonkey&#xff09;插件&#xff0c;并使用特定脚本来实现这个目的。由于Chrome网上应用店可能无法打…

数据结构之“队列”(全方位认识)

&#x1f339;个人主页&#x1f339;&#xff1a;喜欢草莓熊的bear &#x1f339;专栏&#x1f339;&#xff1a;数据结构 前言 上期博客介绍了” 栈 “这个数据结构&#xff0c;他具有先进后出的特点。本期介绍“ 队列 ”这个数据结构&#xff0c;他具有先进先出的特点。 目录…

ASCII码对照表【2024年汇总】

&#x1f37a;ASCII相关文章汇总如下&#x1f37a;&#xff1a; &#x1f388;ASCII码对照表&#xff08;255个ascii字符汇总&#xff09;&#x1f388;&#x1f388;ASCII码对照表&#xff08;Unicode 字符集列表&#xff09;&#x1f388;&#x1f388;ASCII码对照表&#x…

Linux内核链表使用方法

简介&#xff1a; 链表是linux内核中最简单&#xff0c;同时也是应用最广泛的数据结构。内核中定义的是双向链表。 linux的链表不是将用户数据保存在链表节点中&#xff0c;而是将链表节点保存在用户数据中。linux的链表节点只有2个指针(pre和next)&#xff0c;这样的话&#x…

中国星坤连接器:定制化服务,精准选型!

在当今快速发展的电子行业中&#xff0c;连接器作为电子设备中不可或缺的组成部分&#xff0c;其性能和品质直接影响到整个系统的性能表现。中国星坤连接器以其卓越的产品选型系统和质量保证&#xff0c;为全球客户提供了一站式的解决方案。 精准选型&#xff0c;快速定位 中国…

模板进阶:非类型模板参数,类模板特化,模板的编译分离

1. 非类型模板参数 模板参数分类类型形参与非类型形参。 类型形参即&#xff1a;出现在模板参数列表中&#xff0c;跟在class或者typename之类的参数类型名称。 非类型形参&#xff0c;就是用一个常量作为类(函数)模板的一个参数&#xff0c;在类(函数)模板中可将该参数当成常…