昇思MindSpore学习笔记4-05生成式--Pix2Pix实现图像转换

news2024/10/7 13:17:35

摘要:

        记录昇思MindSpore AI框架使用Pix2Pix模型生成图像、判断图像真实概率的原理和实际使用方法、步骤。包括环境准备、下载数据集、数据加载和处理、创建cGAN神经网络生成器和判别器、模型训练、模型推理等。

一、概念

1.Pix2Pix模型

条件生成对抗网络(cGAN, Condition Generative Adversarial Networks )

深度学习图像转换模型

        功能

                转换语义/标签到真实图片

                转换灰度图到彩色图

                转换航空图到地图

                转换白天到黑夜

                转换线稿图到实物图

        cGAN应用于有监督的图像到图像翻译的经典之作

两个模型

        生成器

        判别器

不同数据训练

2.基础原理

cGAN生成器

        将输入图片作为指导信息

        不断输入图像生成模拟图像

Pix2Pix判别器

        判断从生成器输出图像的真实

        博弈平衡点

                生成器输出图像与真实训练数据使得判别器刚好具有50%的概率判断正确。

定义符号:

x                 观测图像数据

z                 随机噪声数据

y=G(x,z)               生成器网络

                             观测图像x + 随机噪声y --> 模拟图片

                              x ϵ 训练数据

D(x,G(x,z))            判别器网络

                             判定生成图像的真实概率

                             x ϵ 训练数据

                            G(x,z) ϵ 生成器。

cGAN损失函数:L_{cGAN}(G,D)=E_{(x,y)}[log(D(x,y)))]+E_{(x,z)}[log(1-D(x,G(x,z)))]

logD(x,y)              判别器参数最大化

log(1-D(G(x,z)))   生成器参数最小化

cGAN的目标arg\ \underset{G}{min}\ \underset{D}{max}\ L_{cGAN}(G,D)

图像转换问题本质上就是像素到像素的映射问题

二、环境准备

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 查看当前 mindspore 版本
!pip show mindspore

输出:

Name: mindspore
Version: 2.2.14
Summary: MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.
Home-page: https://www.mindspore.cn
Author: The MindSpore Authors
Author-email: contact@mindspore.cn
License: Apache 2.0
Location: /home/nginx/miniconda/envs/jupyter/lib/python3.9/site-packages
Requires: asttokens, astunparse, numpy, packaging, pillow, protobuf, psutil, scipy
Required-by: 

1.下载数据

数据集

外墙(facades)数据

mindspore.dataset方法读取

下载数据集

from download import download
​
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/dataset_pix2pix.tar"
​
download(url, "./dataset", kind="tar", replace=True)

输出:

Creating data folder...
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/models/application/dataset_pix2pix.tar (840.0 MB)

file_sizes: 100%|█████████████████████████████| 881M/881M [00:04<00:00, 197MB/s]
Extracting tar file...
Successfully downloaded / unzipped to ./dataset
'./dataset'

2.数据展示

调用Pix2PixDataset和create_train_dataset读取训练集

from mindspore import dataset as ds
import matplotlib.pyplot as plt
​
dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True)
data_iter = next(dataset.create_dict_iterator(output_numpy=True))
# 可视化部分训练数据
plt.figure(figsize=(10, 3), dpi=140)
for i, image in enumerate(data_iter['input_images'][:10], 1):
    plt.subplot(3, 10, i)
    plt.axis("off")
    plt.imshow((image.transpose(1, 2, 0) + 1) / 2)
plt.show()

输出:

三、创建网络

生成器G

        U-Net结构

        输入轮廓图x编码再解码成真图片

判别器D

        条件判别器PatchGAN

        判断由轮廓图x生成图片G(x)的真伪性

损失函数。

1.生成器G结构

U-Net是德国Freiburg大学模式识别和图像处理组

全卷积结构

两个部分

        左侧压缩

                卷积

                降采样

        右侧扩张路径

                卷积

                上采样

                每个网络块的输入由上一层上采样的特征和压缩路径部分的特征拼接而成

U-Net网络模型整体是一个U形的结构

和先降采样到低维度,再升采样到原始分辨率的编解码结构的网络相比

U-Net

        skip-connection

        对应feature maps

        decode后的feature maps

        按通道拼一起

        保留不同分辨率下像素级的细节信息

定义UNet Skip Connection Block

import mindspore
import mindspore.nn as nn
import mindspore.ops as ops
​
class UNetSkipConnectionBlock(nn.Cell):
    def __init__(self, outer_nc, inner_nc, in_planes=None, dropout=False,
                 submodule=None, outermost=False, innermost=False, alpha=0.2, norm_mode='batch'):
        super(UNetSkipConnectionBlock, self).__init__()
        down_norm = nn.BatchNorm2d(inner_nc)
        up_norm = nn.BatchNorm2d(outer_nc)
        use_bias = False
        if norm_mode == 'instance':
            down_norm = nn.BatchNorm2d(inner_nc, affine=False)
            up_norm = nn.BatchNorm2d(outer_nc, affine=False)
            use_bias = True
        if in_planes is None:
            in_planes = outer_nc
        down_conv = nn.Conv2d(in_planes, inner_nc, kernel_size=4,
                              stride=2, padding=1, has_bias=use_bias, pad_mode='pad')
        down_relu = nn.LeakyReLU(alpha)
        up_relu = nn.ReLU()
        if outermost:
            up_conv = nn.Conv2dTranspose(inner_nc * 2, outer_nc,
                                         kernel_size=4, stride=2,
                                         padding=1, pad_mode='pad')
            down = [down_conv]
            up = [up_relu, up_conv, nn.Tanh()]
            model = down + [submodule] + up
        elif innermost:
            up_conv = nn.Conv2dTranspose(inner_nc, outer_nc,
                                         kernel_size=4, stride=2,
                                         padding=1, has_bias=use_bias, pad_mode='pad')
            down = [down_relu, down_conv]
            up = [up_relu, up_conv, up_norm]
            model = down + up
        else:
            up_conv = nn.Conv2dTranspose(inner_nc * 2, outer_nc,
                                         kernel_size=4, stride=2,
                                         padding=1, has_bias=use_bias, pad_mode='pad')
            down = [down_relu, down_conv, down_norm]
            up = [up_relu, up_conv, up_norm]
​
            model = down + [submodule] + up
            if dropout:
                model.append(nn.Dropout(p=0.5))
        self.model = nn.SequentialCell(model)
        self.skip_connections = not outermost
​
    def construct(self, x):
        out = self.model(x)
        if self.skip_connections:
            out = ops.concat((out, x), axis=1)
        return out

2.基于UNet的生成器

class UNetGenerator(nn.Cell):
    def __init__(self, in_planes, out_planes, ngf=64, n_layers=8, norm_mode='bn', dropout=False):
        super(UNetGenerator, self).__init__()
        unet_block = UNetSkipConnectionBlock(ngf * 8, ngf * 8, in_planes=None, submodule=None,
                                             norm_mode=norm_mode, innermost=True)
        for _ in range(n_layers - 5):
            unet_block = UNetSkipConnectionBlock(ngf * 8, ngf * 8, in_planes=None, submodule=unet_block,
                                                 norm_mode=norm_mode, dropout=dropout)
        unet_block = UNetSkipConnectionBlock(ngf * 4, ngf * 8, in_planes=None, submodule=unet_block,
                                             norm_mode=norm_mode)
        unet_block = UNetSkipConnectionBlock(ngf * 2, ngf * 4, in_planes=None, submodule=unet_block,
                                             norm_mode=norm_mode)
        unet_block = UNetSkipConnectionBlock(ngf, ngf * 2, in_planes=None, submodule=unet_block,
                                             norm_mode=norm_mode)
        self.model = UNetSkipConnectionBlock(out_planes, ngf, in_planes=in_planes, submodule=unet_block,
                                             outermost=True, norm_mode=norm_mode)
​
    def construct(self, x):
        return self.model(x)

Pix2Pix训练和测试都使用dropout

生成多样性的结果

3.基于PatchGAN的判别器

PatchGAN结构

卷积

生成矩阵中的每个点代表原图的一小块区域(patch)

通过矩阵中的各个值判断原图中对应每个Patch的真假

import mindspore.nn as nn
​
class ConvNormRelu(nn.Cell):
    def __init__(self,
                 in_planes,
                 out_planes,
                 kernel_size=4,
                 stride=2,
                 alpha=0.2,
                 norm_mode='batch',
                 pad_mode='CONSTANT',
                 use_relu=True,
                 padding=None):
        super(ConvNormRelu, self).__init__()
        norm = nn.BatchNorm2d(out_planes)
        if norm_mode == 'instance':
            norm = nn.BatchNorm2d(out_planes, affine=False)
        has_bias = (norm_mode == 'instance')
        if not padding:
            padding = (kernel_size - 1) // 2
        if pad_mode == 'CONSTANT':
            conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad',
                             has_bias=has_bias, padding=padding)
            layers = [conv, norm]
        else:
            paddings = ((0, 0), (0, 0), (padding, padding), (padding, padding))
            pad = nn.Pad(paddings=paddings, mode=pad_mode)
            conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad', has_bias=has_bias)
            layers = [pad, conv, norm]
        if use_relu:
            relu = nn.ReLU()
            if alpha > 0:
                relu = nn.LeakyReLU(alpha)
            layers.append(relu)
        self.features = nn.SequentialCell(layers)
​
    def construct(self, x):
        output = self.features(x)
        return output
​
class Discriminator(nn.Cell):
    def __init__(self, in_planes=3, ndf=64, n_layers=3, alpha=0.2, norm_mode='batch'):
        super(Discriminator, self).__init__()
        kernel_size = 4
        layers = [
            nn.Conv2d(in_planes, ndf, kernel_size, 2, pad_mode='pad', padding=1),
            nn.LeakyReLU(alpha)
        ]
        nf_mult = ndf
        for i in range(1, n_layers):
            nf_mult_prev = nf_mult
            nf_mult = min(2 ** i, 8) * ndf
            layers.append(ConvNormRelu(nf_mult_prev, nf_mult, kernel_size, 2, alpha, norm_mode, padding=1))
        nf_mult_prev = nf_mult
        nf_mult = min(2 ** n_layers, 8) * ndf
        layers.append(ConvNormRelu(nf_mult_prev, nf_mult, kernel_size, 1, alpha, norm_mode, padding=1))
        layers.append(nn.Conv2d(nf_mult, 1, kernel_size, 1, pad_mode='pad', padding=1))
        self.features = nn.SequentialCell(layers)
​
    def construct(self, x, y):
        x_y = ops.concat((x, y), axis=1)
        output = self.features(x_y)
        return output

4.Pix2Pix的生成器和判别器初始化

实例化Pix2Pix生成器和判别器。

import mindspore.nn as nn
from mindspore.common import initializer as init
​
g_in_planes = 3
g_out_planes = 3
g_ngf = 64
g_layers = 8
d_in_planes = 6
d_ndf = 64
d_layers = 3
alpha = 0.2
init_gain = 0.02
init_type = 'normal'
​
​
net_generator = UNetGenerator(in_planes=g_in_planes, out_planes=g_out_planes,
                              ngf=g_ngf, n_layers=g_layers)
for _, cell in net_generator.cells_and_names():
    if isinstance(cell, (nn.Conv2d, nn.Conv2dTranspose)):
        if init_type == 'normal':
            cell.weight.set_data(init.initializer(init.Normal(init_gain), cell.weight.shape))
        elif init_type == 'xavier':
            cell.weight.set_data(init.initializer(init.XavierUniform(init_gain), cell.weight.shape))
        elif init_type == 'constant':
            cell.weight.set_data(init.initializer(0.001, cell.weight.shape))
        else:
            raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
    elif isinstance(cell, nn.BatchNorm2d):
        cell.gamma.set_data(init.initializer('ones', cell.gamma.shape))
        cell.beta.set_data(init.initializer('zeros', cell.beta.shape))
​
​
net_discriminator = Discriminator(in_planes=d_in_planes, ndf=d_ndf,
                                  alpha=alpha, n_layers=d_layers)
for _, cell in net_discriminator.cells_and_names():
    if isinstance(cell, (nn.Conv2d, nn.Conv2dTranspose)):
        if init_type == 'normal':
            cell.weight.set_data(init.initializer(init.Normal(init_gain), cell.weight.shape))
        elif init_type == 'xavier':
            cell.weight.set_data(init.initializer(init.XavierUniform(init_gain), cell.weight.shape))
        elif init_type == 'constant':
            cell.weight.set_data(init.initializer(0.001, cell.weight.shape))
        else:
            raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
    elif isinstance(cell, nn.BatchNorm2d):
        cell.gamma.set_data(init.initializer('ones', cell.gamma.shape))
        cell.beta.set_data(init.initializer('zeros', cell.beta.shape))
​
class Pix2Pix(nn.Cell):
    """Pix2Pix模型网络"""
    def __init__(self, discriminator, generator):
        super(Pix2Pix, self).__init__(auto_prefix=True)
        self.net_discriminator = discriminator
        self.net_generator = generator
​
    def construct(self, reala):
        fakeb = self.net_generator(reala)
        return fakeb

四、训练

训练判别器

        提高判别图像真伪的概率

训练生成器

        产生更好的模拟图像

分别获取训练损失

每个周期结束时统计

import numpy as np
import os
import datetime
from mindspore import value_and_grad, Tensor
​
epoch_num = 3
ckpt_dir = "results/ckpt"
dataset_size = 400
val_pic_size = 256
lr = 0.0002
n_epochs = 100
n_epochs_decay = 100
​
def get_lr():
    lrs = [lr] * dataset_size * n_epochs
    lr_epoch = 0
    for epoch in range(n_epochs_decay):
        lr_epoch = lr * (n_epochs_decay - epoch) / n_epochs_decay
        lrs += [lr_epoch] * dataset_size
    lrs += [lr_epoch] * dataset_size * (epoch_num - n_epochs_decay - n_epochs)
    return Tensor(np.array(lrs).astype(np.float32))
​
dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True, num_parallel_workers=1)
steps_per_epoch = dataset.get_dataset_size()
loss_f = nn.BCEWithLogitsLoss()
l1_loss = nn.L1Loss()
​
def forword_dis(reala, realb):
    lambda_dis = 0.5
    fakeb = net_generator(reala)
    pred0 = net_discriminator(reala, fakeb)
    pred1 = net_discriminator(reala, realb)
    loss_d = loss_f(pred1, ops.ones_like(pred1)) + loss_f(pred0, ops.zeros_like(pred0))
    loss_dis = loss_d * lambda_dis
    return loss_dis
​
def forword_gan(reala, realb):
    lambda_gan = 0.5
    lambda_l1 = 100
    fakeb = net_generator(reala)
    pred0 = net_discriminator(reala, fakeb)
    loss_1 = loss_f(pred0, ops.ones_like(pred0))
    loss_2 = l1_loss(fakeb, realb)
    loss_gan = loss_1 * lambda_gan + loss_2 * lambda_l1
    return loss_gan
​
d_opt = nn.Adam(net_discriminator.trainable_params(), learning_rate=get_lr(),
                beta1=0.5, beta2=0.999, loss_scale=1)
g_opt = nn.Adam(net_generator.trainable_params(), learning_rate=get_lr(),
                beta1=0.5, beta2=0.999, loss_scale=1)
​
grad_d = value_and_grad(forword_dis, None, net_discriminator.trainable_params())
grad_g = value_and_grad(forword_gan, None, net_generator.trainable_params())
​
def train_step(reala, realb):
    loss_dis, d_grads = grad_d(reala, realb)
    loss_gan, g_grads = grad_g(reala, realb)
    d_opt(d_grads)
    g_opt(g_grads)
    return loss_dis, loss_gan
​
if not os.path.isdir(ckpt_dir):
    os.makedirs(ckpt_dir)
​
g_losses = []
d_losses = []
data_loader = dataset.create_dict_iterator(output_numpy=True, num_epochs=epoch_num)
​
for epoch in range(epoch_num):
    for i, data in enumerate(data_loader):
        start_time = datetime.datetime.now()
        input_image = Tensor(data["input_images"])
        target_image = Tensor(data["target_images"])
        dis_loss, gen_loss = train_step(input_image, target_image)
        end_time = datetime.datetime.now()
        delta = (end_time - start_time).microseconds
        if i % 2 == 0:
            print("ms per step:{:.2f}  epoch:{}/{}  step:{}/{}  Dloss:{:.4f}  Gloss:{:.4f} ".format((delta / 1000), (epoch + 1), (epoch_num), i, steps_per_epoch, float(dis_loss), float(gen_loss)))
        d_losses.append(dis_loss.asnumpy())
        g_losses.append(gen_loss.asnumpy())
    if (epoch + 1) == epoch_num:
        mindspore.save_checkpoint(net_generator, ckpt_dir + "Generator.ckpt")

输出:

ms per step:500.71  epoch:1/3  step:0/25  Dloss:0.6924  Gloss:38.2835 
ms per step:112.14  epoch:1/3  step:2/25  Dloss:0.6490  Gloss:33.7575 
ms per step:105.57  epoch:1/3  step:4/25  Dloss:0.5474  Gloss:35.7007 
ms per step:104.50  epoch:1/3  step:6/25  Dloss:0.6045  Gloss:38.9824 
ms per step:105.54  epoch:1/3  step:8/25  Dloss:0.2939  Gloss:37.5004 
ms per step:109.78  epoch:1/3  step:10/25  Dloss:0.2635  Gloss:37.8297 
ms per step:109.31  epoch:1/3  step:12/25  Dloss:0.4991  Gloss:36.2161 
ms per step:109.15  epoch:1/3  step:14/25  Dloss:0.2570  Gloss:36.8445 
ms per step:109.72  epoch:1/3  step:16/25  Dloss:0.2443  Gloss:37.3726 
ms per step:108.75  epoch:1/3  step:18/25  Dloss:0.3285  Gloss:36.3953 
ms per step:105.53  epoch:1/3  step:20/25  Dloss:0.4726  Gloss:37.0197 
ms per step:106.82  epoch:1/3  step:22/25  Dloss:0.2093  Gloss:39.1963 
ms per step:106.30  epoch:1/3  step:24/25  Dloss:0.2402  Gloss:38.0046 
ms per step:103.31  epoch:2/3  step:0/25  Dloss:0.3002  Gloss:31.6780 
ms per step:105.05  epoch:2/3  step:2/25  Dloss:0.3453  Gloss:34.5222 
ms per step:101.52  epoch:2/3  step:4/25  Dloss:0.1365  Gloss:36.2112 
ms per step:106.16  epoch:2/3  step:6/25  Dloss:0.2867  Gloss:36.5928 
ms per step:102.05  epoch:2/3  step:8/25  Dloss:0.2066  Gloss:35.2446 
ms per step:106.42  epoch:2/3  step:10/25  Dloss:0.7759  Gloss:39.4841 
ms per step:106.11  epoch:2/3  step:12/25  Dloss:0.4025  Gloss:33.4352 
ms per step:102.23  epoch:2/3  step:14/25  Dloss:0.3659  Gloss:31.1093 
ms per step:106.73  epoch:2/3  step:16/25  Dloss:0.2157  Gloss:38.9941 
ms per step:108.85  epoch:2/3  step:18/25  Dloss:0.3607  Gloss:37.1816 
ms per step:105.55  epoch:2/3  step:20/25  Dloss:0.1683  Gloss:30.8941 
ms per step:105.53  epoch:2/3  step:22/25  Dloss:1.3473  Gloss:35.3493 
ms per step:105.66  epoch:2/3  step:24/25  Dloss:0.5771  Gloss:36.7098 
ms per step:105.42  epoch:3/3  step:0/25  Dloss:0.6560  Gloss:36.6383 
ms per step:106.17  epoch:3/3  step:2/25  Dloss:0.3694  Gloss:36.5227 
ms per step:105.67  epoch:3/3  step:4/25  Dloss:0.3402  Gloss:34.6686 
ms per step:106.52  epoch:3/3  step:6/25  Dloss:0.3173  Gloss:29.8994 
ms per step:105.17  epoch:3/3  step:8/25  Dloss:0.2101  Gloss:34.6112 
ms per step:104.83  epoch:3/3  step:10/25  Dloss:0.5902  Gloss:36.7074 
ms per step:105.24  epoch:3/3  step:12/25  Dloss:0.4989  Gloss:35.7287 
ms per step:106.48  epoch:3/3  step:14/25  Dloss:0.4831  Gloss:31.4974 
ms per step:100.69  epoch:3/3  step:16/25  Dloss:0.2834  Gloss:39.2598 
ms per step:107.46  epoch:3/3  step:18/25  Dloss:0.2820  Gloss:36.3580 
ms per step:101.32  epoch:3/3  step:20/25  Dloss:0.2407  Gloss:36.4354 
ms per step:101.03  epoch:3/3  step:22/25  Dloss:0.4778  Gloss:35.9755 
ms per step:102.05  epoch:3/3  step:24/25  Dloss:0.6571  Gloss:35.1790 
|

五、推理

获取训练完成后的ckpt文件

导入ckpt中的权重参数到模型

        load_checkpoint

        load_param_into_net

获取数据

推理

演示效果图

from mindspore import load_checkpoint, load_param_into_net
​
param_g = load_checkpoint(ckpt_dir + "Generator.ckpt")
load_param_into_net(net_generator, param_g)
dataset = ds.MindDataset("./dataset/dataset_pix2pix/train.mindrecord", columns_list=["input_images", "target_images"], shuffle=True)
data_iter = next(dataset.create_dict_iterator())
predict_show = net_generator(data_iter["input_images"])
plt.figure(figsize=(10, 3), dpi=140)
for i in range(10):
    plt.subplot(2, 10, i + 1)
    plt.imshow((data_iter["input_images"][i].asnumpy().transpose(1, 2, 0) + 1) / 2)
    plt.axis("off")
    plt.subplots_adjust(wspace=0.05, hspace=0.02)
    plt.subplot(2, 10, i + 11)
    plt.imshow((predict_show[i].asnumpy().transpose(1, 2, 0) + 1) / 2)
    plt.axis("off")
    plt.subplots_adjust(wspace=0.05, hspace=0.02)
plt.show()

输出:

各数据集分别推理的效果如下

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1903077.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

浅谈进程隐藏技术

前言 在之前几篇文章已经学习了解了几种钩取的方法 浅谈调试模式钩取浅谈热补丁浅谈内联钩取原理与实现导入地址表钩取技术 这篇文章就利用钩取方式完成进程隐藏的效果。 进程遍历方法 在实现进程隐藏时&#xff0c;首先需要明确遍历进程的方法。 CreateToolhelp32Snapsh…

ViewController 生命周期

ViewController 生命周期 ViewController 生命周期测试程序&#xff1a;ViewControllerLifeCircle ViewController 生命周期 ViewController 是 iOS 开发中 MVC 框架中的 C&#xff0c;ViewColllecter 是 View&#xff08;视图&#xff09;的 Collecter&#xff08;控制器&…

kafka中

Kafka RocketMQ概述 RabbitMQ概述 ActiveMQ概述 ZeroMQ概述 MQ对比选型 适用场景-从公司基础建设力量角度出发 适用场景-从业务场景出发 Kafka配置介绍 运行Kafka 安装ELAK 配置EFAK EFAK界面 KAFKA常用术语 Kafka常用指令 Kafka中消息读取 单播消息 group.id 相同 多播消息 g…

LabVIEW在图像处理中的应用

abVIEW作为一种图形化编程环境&#xff0c;不仅在数据采集和仪器控制领域表现出色&#xff0c;还在图像处理方面具有强大的功能。借助其Vision Development Module&#xff0c;LabVIEW提供了丰富的图像处理工具&#xff0c;广泛应用于工业检测、医学影像、自动化控制等多个领域…

LabVIEW在自动化测试项目中的推荐架构

在自动化测试项目中&#xff0c;推荐使用LabVIEW的生产者-消费者&#xff08;Producer-Consumer&#xff09;架构。这种架构利用队列实现数据的异步传输和处理&#xff0c;提供了高效、稳定和可扩展的解决方案。其主要优点包括&#xff1a;实现数据采集与处理的解耦、提高系统响…

SKF轴承故障频率查询

1&#xff0c;第一步&#xff1a;搜索轴承型号 skf官网 2&#xff0c;第二步&#xff1a;查询故障频率。 第三步&#xff1a;

《基于 defineProperty 实现前端运行时变量检测》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; 近期刚转战 CSDN&#xff0c;会严格把控文章质量&#xff0c;绝不滥竽充数&#xff0c;欢迎多多交流~ &am…

SpringBoot实现多数据源切换

1. 概述 仓库地址&#xff1a;https://gitee.com/aopmin/multi-datasource-demo 随着项目规模的扩大和业务需求的复杂化&#xff0c;单一数据源已经不能满足实际开发中的需求。在许多情况下&#xff0c;我们需要同时操作多个数据库&#xff0c;或者需要将不同类型的数据存储在不…

MyBatis-Plus-实用的功能自动填充字段

前言: java项目用到了mybatis-plus&#xff0c;在一些类里面需要在更新时候&#xff0c;统一设置&#xff0c;修改人&#xff0c;修改ID&#xff0c;修改时间。新增时候设置 创建人&#xff0c;创建时间等 基础类&#xff1a; Data public abstract class BaseModel implements…

昇思25天学习打卡营第18天 | K近邻算法实现红酒聚类

1、实验目的 了解KNN的基本概念&#xff1b;了解如何使用MindSpore进行KNN实验。 2、K近邻算法原理介绍 K近邻算法&#xff08;K-Nearest-Neighbor, KNN&#xff09;是一种用于分类和回归的非参数统计方法&#xff0c;最初由 Cover和Hart于1968年提出(Cover等人,1967)&#…

身体(body)的觉醒

佛&#xff0c;是一个梵文的汉语音译词&#xff0c;指觉醒者。 何谓觉醒&#xff1f;什么的觉醒&#xff1f;其实很简单&#xff0c;就是身体的觉醒。 佛的另一个名字&#xff0c;叫菩提&#xff0c;佛就是菩提&#xff0c;菩提老祖&#xff0c;就是佛祖。 body&#xff0c;即…

如何优化 PostgreSQL 中对于复杂数学计算的查询?

文章目录 一、理解复杂数学计算的特点二、优化原则&#xff08;一&#xff09;索引优化&#xff08;二&#xff09;查询重写&#xff08;三&#xff09;数据库配置调整&#xff08;四&#xff09;使用数据库内置函数的优势 三、具体的优化方案和示例&#xff08;一&#xff09;…

数据结构算法-排序(一)-冒泡排序

什么是冒泡排序 冒泡排序&#xff1a;在原数组中通过相邻两项元素的比较&#xff0c;交换而完成的排序算法。 算法核心 数组中相邻两项比较、交换。 算法复杂度 时间复杂度 实现一次排序找到最大值需要遍历 n-1次(n为数组长度) 需要这样的排序 n-1次。 需要 (n-1) * (n-1) —…

基于springboot+vue+uniapp的高校宿舍信息管理系统小程序

开发语言&#xff1a;Java框架&#xff1a;springbootuniappJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#…

几款电脑端能够运行的AI大模型聊天客户端

Ollama Ollama 是一个用于在本地运行和管理大型语言模型的工具。它支持多种流行模型的下载和本地运行&#xff0c;包括 LLaMA-2、CodeLLaMA、Falcon 和 Mistral 。Ollama 提供了一个简单、轻量级和可扩展的解决方案&#xff0c;使得用户可以以最简单快速的方式在本地运行大模型…

LabVIEW透视变换

透视变换概述源程序在www.bjcyck.com下载 透视变换是一种几何变换&#xff0c;用于对图像进行扭曲&#xff0c;使其看起来从不同角度拍摄。这在计算机视觉和图像处理领域非常重要&#xff0c;例如在投影校正和图像配准中。LabVIEW提供了强大的图像处理工具&#xff0c;利用其V…

阿里通义音频生成大模型 FunAudioLLM 开源!

01 导读 人类对自身的研究和模仿由来已久&#xff0c;在我国2000多年前的《列子汤问》里就描述了有能工巧匠制作出会说话会舞动的类人机器人的故事。声音包含丰富的个体特征及情感情绪信息&#xff0c;对话作为人类最常使用亲切自然的交互模式&#xff0c;是连接人与智能世界…

gcc的编译C语言的过程

gcc的简介 GCC&#xff08;GNU Compiler Collection&#xff09;是由GNU项目开发和维护的一套开源编程语言编译器集合。它支持多种编程语言&#xff0c;包括但不限于C、C、Objective-C、Fortran、Ada等。GCC被广泛应用于编译和优化各种程序&#xff0c;是许多开发者和组织的首选…

【Unity数据交互】如何Unity中读取Ecxel中的数据

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 专栏交流&#x1f9e7;&…

picgo+gitee图床配置

node.js安装 刚开始顺着picgo操作,直接跳转到了node.js官网 下载的时候直接 Next,然后可以自定义安装路径,我的安装路径是C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Node.js 然后再在安装路径的根目录下新建两个文件夹,nodecache 和 nodeglobal, 如图所示:…