如何确保 PostgreSQL 在高并发写操作场景下的数据完整性?

news2024/11/28 14:36:10

文章目录

  • 一、理解数据完整性
  • 二、高并发写操作带来的挑战
  • 三、解决方案
    • (一)使用合适的事务隔离级别
    • (二)使用合适的锁机制
    • (三)处理死锁
    • (四)使用索引和约束
    • (五)批量操作和事务控制
    • (六)监控和优化数据库
  • 四、示例应用场景
  • 五、总结

美丽的分割线

PostgreSQL


在高并发写操作场景下,确保 PostgreSQL 数据库的数据完整性是至关重要的。数据完整性意味着数据的准确性、一致性和可靠性,保证数据符合预期的规则和约束。以下将详细探讨这个问题,并提供相应的解决方案和示例代码来加强理解。

美丽的分割线

一、理解数据完整性

数据完整性可以分为以下几个方面:

  1. 实体完整性:确保表中的每一行都有一个唯一标识(主键),并且主键的值不能为空。
  2. 域完整性:保证列中的数据值符合特定的数据类型、取值范围或其他约束条件。
  3. 参照完整性:维护表之间的关联关系,确保外键引用的有效性。
  4. 用户定义的完整性:根据业务规则自定义的约束条件,例如某些列的组合唯一性等。

美丽的分割线

二、高并发写操作带来的挑战

在高并发写操作的情况下,可能会出现以下问题影响数据完整性:

  1. 并发事务的冲突

    • 当多个事务同时修改相同的数据行时,可能会导致数据不一致。
    • 例如,一个事务正在读取数据准备进行修改,而另一个事务已经先修改并提交了该数据,就会发生冲突。
  2. 死锁

    • 两个或多个事务相互等待对方释放资源,从而导致都无法继续执行,形成死锁。
  3. 数据丢失或重复更新

    • 由于并发控制不当,可能会出现数据丢失或重复更新的情况。
  4. 性能下降

    • 大量并发写操作可能导致数据库性能下降,影响响应时间和事务吞吐量。

美丽的分割线

三、解决方案

为了解决这些问题,确保在高并发写操作环境下的数据完整性,可以采取以下措施:

(一)使用合适的事务隔离级别

PostgreSQL 提供了多种事务隔离级别,包括 Read UncommittedRead CommittedRepeatable ReadSerializable。默认的隔离级别是 Read Committed

  1. Read Uncommitted:这是最低的隔离级别,允许一个事务读取未提交的数据,可能导致脏读、不可重复读和幻读等问题,一般不用于要求数据完整性的场景。
  2. Read Committed:一个事务只能读取已经提交的数据,避免了脏读,但仍可能出现不可重复读和幻读。
  3. Repeatable Read:在同一个事务中多次读取的数据结果是一致的,避免了不可重复读,但仍可能出现幻读。
  4. Serializable:最高的隔离级别,保证事务的串行执行,完全避免了并发事务带来的问题,但可能会对并发性能产生较大影响。

对于大多数高并发场景,Read Committed 通常是一个较好的平衡选择。但如果对数据一致性要求非常严格,可以考虑使用 Serializable 隔离级别。以下是在 PostgreSQL 中设置事务隔离级别的示例代码:

-- 开启一个事务并设置隔离级别为 Serializable
BEGIN TRANSACTION ISOLATION LEVEL SERIALIZABLE;

-- 在此进行数据库操作

COMMIT;

(二)使用合适的锁机制

PostgreSQL 提供了多种锁类型,如行锁、表锁等。在高并发写操作中,合理地使用锁可以避免并发冲突。

  1. 行锁

    • 行锁用于锁定特定的数据行,确保只有一个事务可以修改特定行的数据。在 UPDATEDELETE 操作时会自动获取行锁。
    • 示例:UPDATE table_name SET column = value WHERE id = 1; 在执行时会对满足条件的行自动获取行锁。
  2. 表锁

    • 表锁可以用于控制整个表的访问。有 SHARE (共享锁)、EXCLUSIVE (排他锁)等模式。
    • 示例:LOCK TABLE table_name IN SHARE MODE; 获取共享表锁。

需要谨慎使用表锁,因为它可能会对并发性能产生较大的影响,一般只在特殊情况下使用,比如进行大规模的数据导入或修改。

(三)处理死锁

PostgreSQL 会自动检测和处理死锁,但也可以通过一些方式来尽量减少死锁的发生。

  1. 优化事务的执行顺序和操作逻辑,避免形成环形等待的资源依赖关系。

  2. 尽量缩短事务的持有锁时间,避免长时间占有资源。

  3. 在编程中合理处理异常,当检测到死锁时进行重试或采取其他恢复措施。

以下是一个示例代码,展示如何处理可能的死锁异常:

import psycopg2
import time

def perform_transaction(conn):
    try:
        cur = conn.cursor()
        cur.execute("BEGIN;")
        cur.execute("UPDATE table_name SET column = value WHERE id = 1;")
        time.sleep(5)  # 模拟长时间操作导致死锁
        cur.execute("UPDATE table_name SET column = another_value WHERE id = 2;")
        cur.execute("COMMIT;")
    except psycopg2.extensions.TransactionRollbackError as e:
        if e.pgcode == '40P01':  # 死锁错误码
            print("Deadlock detected. Retrying...")
            time.sleep(1)  # 等待一段时间后重试
            perform_transaction(conn)

conn = psycopg2.connect(database="your_database", user="your_user", password="your_password", host="your_host", port="your_port")
perform_transaction(conn)
conn.close()

(四)使用索引和约束

  1. 合适的索引

    • 为经常用于查询、连接和排序的列创建索引,可以提高查询性能,减少不必要的全表扫描,从而降低并发冲突的可能性。
    • 例如,如果经常根据 user_id 来查询用户订单,可以在 orders 表的 user_id 列上创建索引。
  2. 约束

    • 包括主键约束、唯一约束、外键约束和检查约束等。这些约束可以在数据库层面确保数据的完整性,避免非法数据的插入和更新。
    -- 创建主键约束
    CREATE TABLE users (
        id SERIAL PRIMARY KEY,
        name VARCHAR(255)
    );
    
    -- 创建唯一约束
    CREATE TABLE emails (
        id SERIAL PRIMARY KEY,
        email VARCHAR(255) UNIQUE
    );
    
    -- 创建外键约束
    CREATE TABLE orders (
        id SERIAL PRIMARY KEY,
        user_id INT REFERENCES users(id)
    );
    
    -- 创建检查约束
    CREATE TABLE products (
        id SERIAL PRIMARY KEY,
        price DECIMAL(10, 2) CHECK (price > 0)
    );
    

(五)批量操作和事务控制

  1. 批量操作

    • 尽量将多个相关的写操作组合成一个批量操作,减少事务的启动和提交次数,从而提高性能。
    -- 批量插入数据
    INSERT INTO table_name (column1, column2)
    VALUES
        (value1_1, value1_2),
        (value2_1, value2_2),
        (value3_1, value3_2);
    
  2. 控制事务大小

    • 不要在一个事务中包含过多的操作,以免事务过大导致长时间锁定资源和性能下降。

(六)监控和优化数据库

  1. 监控性能指标

    • 持续监控数据库的性能指标,如每秒事务数、锁等待时间、缓存命中率等,及时发现性能瓶颈和潜在的问题。
  2. 优化数据库配置

    • 根据系统的负载和硬件资源,调整 PostgreSQL 的配置参数,如 shared_bufferswork_mem 等。
  3. 定期进行数据库维护

    • 包括索引重建、表空间回收、统计信息更新等,以保持数据库的良好性能和数据完整性。

美丽的分割线

四、示例应用场景

假设我们有一个在线商城系统,其中有 orders 表和 order_items 表,订单和订单详情之间存在关联关系。在高并发环境下,处理订单创建和更新的逻辑需要确保数据完整性。

以下是一个可能的解决方案示例代码:

-- 创建订单表
CREATE TABLE orders (
    order_id SERIAL PRIMARY KEY,
    customer_id INT,
    total_amount DECIMAL(10, 2),
    order_status VARCHAR(50),
    CONSTRAINT fk_customer FOREIGN KEY (customer_id) REFERENCES customers(customer_id)
);

-- 创建订单详情表
CREATE TABLE order_items (
    item_id SERIAL PRIMARY KEY,
    order_id INT,
    product_id INT,
    quantity INT,
    price DECIMAL(10, 2),
    CONSTRAINT fk_order FOREIGN KEY (order_id) REFERENCES orders(order_id)
);
import psycopg2

# 插入订单
def insert_order(conn, customer_id, total_amount, order_status):
    cur = conn.cursor()
    cur.execute("""
        INSERT INTO orders (customer_id, total_amount, order_status)
        VALUES (%s, %s, %s)
        RETURNING order_id;
    """, (customer_id, total_amount, order_status))
    order_id = cur.fetchone()[0]
    conn.commit()
    return order_id

# 插入订单详情
def insert_order_item(conn, order_id, product_id, quantity, price):
    cur = conn.cursor()
    cur.execute("""
        INSERT INTO order_items (order_id, product_id, quantity, price)
        VALUES (%s, %s, %s, %s);
    """, (order_id, product_id, quantity, price))
    conn.commit()

# 示例用法
conn = psycopg2.connect(database="your_database", user="your_user", password="your_password", host="your_host", port="your_port")

order_id = insert_order(conn, 1, 100.50, 'Pending')

insert_order_item(conn, order_id, 1, 2, 25.00)
insert_order_item(conn, order_id, 2, 1, 75.50)

conn.close()

在上述示例中,通过使用外键约束确保了订单和订单详情之间的参照完整性。在插入数据的过程中,通过及时提交事务来释放资源。

美丽的分割线

五、总结

在高并发写操作场景下确保 PostgreSQL 数据完整性是一个复杂但重要的任务。需要综合运用合适的事务隔离级别、锁机制、索引和约束、批量操作和事务控制,以及持续的监控和优化来达到目标。同时,在设计数据库架构和应用程序时,要充分考虑数据的访问模式和业务规则,以预防可能出现的数据完整性问题。通过合理的策略和措施,可以在保证数据完整性的前提下实现系统的高性能和高可用性。


美丽的分割线

🎉相关推荐

  • 🍅关注博主🎗️ 带你畅游技术世界,不错过每一次成长机会!
  • 📢学习做技术博主创收
  • 📚领书:PostgreSQL 入门到精通.pdf
  • 📙PostgreSQL 中文手册
  • 📘PostgreSQL 技术专栏

PostgreSQL

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1902929.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

《linux系统内核设计与实现》-内核空间和用户空间的概念以及内核空间和用户空间的数据拷贝

1 内核空间和用户空间的概念 用户空间:0-3G 内核空间:3-4G PAGE_OFFSET配置用户空间和内核空间的界限 分离的原因: (1)处理器模式不同,权限不同 对于x86体系的cpu,用户空间代码运行在Ring3…

时间、查找、打包、行过滤与指令的运行——linux指令学习(二)

前言:本节内容标题虽然为指令,但是并不只是讲指令, 更多的是和指令相关的一些原理性的东西。 如果友友只想要查一查某个指令的用法, 很抱歉, 本节不是那种带有字典性质的文章。但是如果友友是想要来学习的,…

如何创建和规划 PMO 团队,并发挥其最大实际价值

在当今复杂多变的商业环境中,项目管理办公室(PMO)已成为许多组织中不可或缺的一部分。PMO 团队能够为企业的项目管理提供战略指导、资源协调、流程优化等支持,从而提升项目的成功率和组织的整体绩效。那么,如何创建和规…

【React】React18 Hooks 之 useReducer

目录 useReducer案例1:useReducer不带初始化函数案例2:useReducer带初始化函数注意事项1:dispatch函数不会改变正在运行的代码的状态注意事项2:获取dispatch函数触发后 JavaScript 变量的值注意事项3:触发了reducer&am…

【沐风老师】3DMAX样条线增强工具SplinePro使用方法详解

3DMAX样条线增强工具SplinePro使用教程 3DMAX样条线增强工具SplinePro,允许创建选定的多条样条曲线形状的轮廓并删除交叉点。 【适用版本】 3dMax2019 - 2025 【安装方法】 1.解压缩后,确认SplinePro-0.2.0.mse和logo.png两个文件在同一文件夹中。 2.…

移动校园(4):数据处理(sql server数据库)

昨天写入数据库后的数据 可以看到classname和timeandlocation有多个值,所以需要进行数据处理 let reawait req.app.locals.db.query(select distinct classname from courses)let data[]re.recordset.map((value)>{let namesvalue.classname.split(,)names.map(…

那你真的了解方法调用吗?

方法调用是不是很熟悉?那你真的了解它吗?今天就让我们来盘一下它。 首先大家要明确一个概念,此处的方法调用并不是方法中的代码被执行,而是要确定被调用方法的版本,即最终会调用哪一个方法。 之前我们了解到&#xff…

【Android】自定义换肤框架05之Skinner框架集成

引入依赖 api("io.github.hellogoogle2000:android-skinner:1.0.0")初始化Skinner 在所有功能前调用即可,建议在Application中初始化 SkinnerKit.init(application)安装皮肤包 在应用该皮肤包前安装即可,建议预安装,或应用皮肤…

【反悔堆 反悔贪心】2813. 子序列最大优雅度

本文涉及知识点 反悔堆 反悔贪心 LeetCode 2813. 子序列最大优雅度 给你一个长度为 n 的二维整数数组 items 和一个整数 k 。 items[i] [profiti, categoryi],其中 profiti 和 categoryi 分别表示第 i 个项目的利润和类别。 现定义 items 的 子序列 的 优雅度 可…

如何在 PostgreSQL 中实现数据的增量备份和恢复?

文章目录 一、增量备份的原理二、准备工作(一)环境配置(二)创建测试数据库和表(三)插入初始数据 三、全量备份四、基于时间点的增量备份(一)开启 WAL 归档(二&#xff09…

网页封装APP:让您的网站变身移动应用

网页封装APP:让您的网站变身移动应用 随着移动设备的普及,越来越多的人开始使用移动设备浏览网站。但是,传统的网站设计并不适合移动设备的屏幕尺寸和交互方式,这导致了用户体验不佳和流失。 有没有办法让您的网站变身移动应用&…

TXT文本处理新篇章:告别繁琐,一键批量删除单号间空白行,引领高效管理新潮流!

在繁忙的商务环境中,文本处理往往占据了大量的时间和精力。特别是那些充斥着订单、单号等关键信息的TXT文本文件,一旦处理不当,就可能引发一系列问题。空白行,这个看似微不足道的小细节,却常常成为我们高效处理文本的绊…

C++ | Leetcode C++题解之第220题存在重复元素III

题目&#xff1a; 题解&#xff1a; class Solution { public:int getID(int x, long w) {return x < 0 ? (x 1ll) / w - 1 : x / w;}bool containsNearbyAlmostDuplicate(vector<int>& nums, int k, int t) {unordered_map<int, int> mp;int n nums.si…

python根据父母身高预测儿子身高

题目 从键盘输入父母的升高&#xff0c;并使用eval()或float()转换输入的数据类型。计算公式&#xff1a;儿子身高&#xff08;父亲身高母亲身高&#xff09;*0.54. father_heighteval(input(请输入爸爸的身高&#xff1a;)) mother_heighteval(input(请输入妈妈的身高&#…

普通Java工程如何在代码中引用docker-compose.yml中的environment值

文章目录 一、概述二、常规做法1. 数据库配置分离2. 代码引用配置3. 编写启动类4. 支持打包成可执行包5. 支持可执行包打包成docker镜像6. docker运行 三、存在问题分析四、改进措施1. 包含environment 变量的编排文件2. 修改读取配置文件方式3. 为什么可以这样做 五、运行效果…

【项目日记(一)】梦幻笔耕-数据层实现

❣博主主页: 33的博客❣ ▶️文章专栏分类:项目日记◀️ &#x1f69a;我的代码仓库: 33的代码仓库&#x1f69a; &#x1faf5;&#x1faf5;&#x1faf5;关注我带你了解更多项目内容 目录 1.前言2.后端模块3数据库设计4.mapper实现4.1UserInfoMapper4.2BlogMapper 5.总结 1.…

20240707 每日AI必读资讯

&#x1f9e0;中国生成式AI专利数量超过美国 6 倍 - 中国在2014年至2023年期间申请的生成式AI专利数量达到38210个&#xff0c;超过了美国的6倍。 - 腾讯、平安保险集团和百度是GenAI专利数量最多的中国公司。 - 中国的顶级学术机构和技术生态为生成式AI的发展提供了强大支持…

初学嵌入式是弄linux还是单片机?

在开始前刚好我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「单片机的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“666”之后私信回复“666”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&#xff01;1、先入门了51先学了89c52…

Ubuntu 22.04 LTS 上安装 MySQL8.0.23(在线安装)

目录 在线安装MySQL 步骤1&#xff1a;更新软件包列表 步骤2&#xff1a;安装MySQL服务器 步骤3&#xff1a;启动MySQL服务 步骤4&#xff1a;检查MySQL状态 步骤5&#xff1a;修改密码、权限 在线安装MySQL 步骤1&#xff1a;更新软件包列表 在进行任何软件安装之前&a…

绘唐3最新版本哪里下载

绘唐3最新版本哪里下载 绘唐最新版本下载地址 推文视频创作设计是一种通过视频和文字的形式来进行推广的方式&#xff0c;可以通过一些专业的工具来进行制作。 以下是一些常用的小说推文视频创作设计工具&#xff1a; 视频剪辑软件&#xff1a;如Adobe Premiere Pro、Fina…