linux watchdog 子系统

news2025/2/25 3:43:39

目录

  • 一、watchdog 子系统
  • 二、关键数据结构
    • 2.1 watchdog_device
    • 2.2 watchdog_ops
    • 2.3 watchdog_info
  • 三、重要流程
    • 3.1 watchdog 初始化
    • 3.2 watchdog 设备注册
    • 3.3 watchdog 设备文件操作函数
    • 3.4 watchdog 喂狗
      • 用户空间 watchdog(busybox)
      • 内核空间喂狗
      • 疑问 or bug?
    • 3.5 watchdog pretimeout 和 governor
  • 四、softdog
    • 4.1 softdog_init
    • 4.2 softdog_ping
    • 4.3 softdog_fire

一、watchdog 子系统

linux 中 watchdog 子系统是用于防止系统发生长时间故障、将系统从死循环或者死锁等异常状态中退出并重启的一种机制。

linux 内核支持基于 hrtimer 的 softdog 和基于硬件的硬件看门狗,创建 /dev/watchdog* 设备文件与用户空间程序进行交互。

用户空间的 watchdog 程序,会通过/dev/watchdog* 设备进行周期性喂狗。
在这里插入图片描述

二、关键数据结构

2.1 watchdog_device

watchdog_device 表示一个 watchdog 设备,保存了 watchdog 的各种操作参数和操作 ops。

struct watchdog_device {
	int id;
	struct device *parent;
	const struct attribute_group **groups;    // 创建watchdog device的sysfs属性列表
	const struct watchdog_info *info;    // 记录watchdog的特性,例如WDIOF_SETTIMEOUT WDIOF_KEEPALIVEPING
	const struct watchdog_ops *ops;    // watchdog 操作接口
	const struct watchdog_governor *gov;   //  pretimeout使用的governor
	unsigned int bootstatus;    // boot 时 watchdog 的状态
	unsigned int timeout;
	unsigned int pretimeout;
	unsigned int min_timeout;
	unsigned int max_timeout;
	unsigned int min_hw_heartbeat_ms;
	unsigned int max_hw_heartbeat_ms;
	struct notifier_block reboot_nb;
	struct notifier_block restart_nb;
	void *driver_data;
	struct watchdog_core_data *wd_data;
	unsigned long status;    // watchdog 状态,active\running……
/* Bit numbers for status flags */
#define WDOG_ACTIVE		0	/* Is the watchdog running/active */
#define WDOG_NO_WAY_OUT		1	/* Is 'nowayout' feature set ? */
#define WDOG_STOP_ON_REBOOT	2	/* Should be stopped on reboot */
#define WDOG_HW_RUNNING		3	/* True if HW watchdog running */
#define WDOG_STOP_ON_UNREGISTER	4	/* Should be stopped on unregister */
	struct list_head deferred;
};

2.2 watchdog_ops

watchdog_ops 定义了 watchdog device 操作函数。

struct watchdog_ops {
	struct module *owner;
	/* mandatory operations */
	int (*start)(struct watchdog_device *);
	int (*stop)(struct watchdog_device *);
	/* optional operations */
	int (*ping)(struct watchdog_device *);
	unsigned int (*status)(struct watchdog_device *);
	int (*set_timeout)(struct watchdog_device *, unsigned int);
	int (*set_pretimeout)(struct watchdog_device *, unsigned int);
	unsigned int (*get_timeleft)(struct watchdog_device *);
	int (*restart)(struct watchdog_device *, unsigned long, void *);
	long (*ioctl)(struct watchdog_device *, unsigned int, unsigned long);
};

2.3 watchdog_info

struct watchdog_info {
	__u32 options;		/* Options the card/driver supports */
	__u32 firmware_version;	/* Firmware version of the card */
	__u8  identity[32];	/* Identity of the board */
};

三、重要流程

3.1 watchdog 初始化

watchdog_init 接口对 watchdog 子系统做初始化:

watchdog_init
  ->watchdog_dev_init
    ->kthread_create_worker(0, "watchdogd")
    ->sched_setscheduler  // 设置watchdog_kworker的线程调度策略为SCHED_FIFO, 优先级MAX_RT_PRIO - 1
    ->class_register
    ->alloc_chrdev_region
  ->watchdog_deferred_registration // 如果watchdog设备驱动早于watchdog_init则将设备加入到wtd_deferred_reg_list,此处集中进行列表上watchdog设备注册。

3.2 watchdog 设备注册

devm_watchdog_register_device 接口用于注册 watchdog 设备:

int devm_watchdog_register_device(struct device *dev, struct watchdog_device *wdd)
  -> watchdog_register_device(wdd);
    -> __watchdog_register_device
      -> // 参数检查
      -> watchdog_check_min_max_timeout
      -> watchdog_dev_register
        -> watchdog_cdev_register
          -> kthread_init_work // 创建pingwork任务
          -> hrtimer_init // 创建一个高精度定时器,定时器结束后调用的接口是 watchdog_timer_expired
          -> misc_register  // if (wdd->id == 0),如果是注册第一个watchdog,则注册misc设备
          -> device_initialize
          -> cdev_init
          -> cdev_device_add // 创建并初始化watchdog设备,设备名为/dev/watchdog*
        -> watchdog_register_pretimeout
      -> watchdog_reboot_notifier // if (test_bit(WDOG_STOP_ON_REBOOT, &wdd->status))
      -> register_restart_handler // if (wdd->ops->restart)

3.3 watchdog 设备文件操作函数

watchdog创建的misc 设备和 cdev 的文件操作函数都是 watchdog_fops

static const struct file_operations watchdog_fops = {
	.owner		= THIS_MODULE,
	.write		= watchdog_write,
	.unlocked_ioctl	= watchdog_ioctl,
	.open		= watchdog_open,
	.release	= watchdog_release,
};

static struct miscdevice watchdog_miscdev = {
	.minor		= WATCHDOG_MINOR,
	.name		= "watchdog",
	.fops		= &watchdog_fops,
};

watchdog_open 接口中调用 watchdog_start 接口,start watchdog 和更新内核喂狗定时器。

static int watchdog_open(struct inode *inode, struct file *file)
  -> watchdog_start(wdd);
    -> wdd->ops->start(wdd)
    -> watchdog_update_worker // 更新喂狗定时器
  -> stream_open(inode, file);

watchdog_write 接口实现喂狗功能,写任意值都能喂狗; “V” 是 magic 字符,写 “V” 之后使能 watchdog 的魔法关闭功能:

static ssize_t watchdog_write(struct file *file, const char __user *data,
						size_t len, loff_t *ppos)
  ->set_bit(_WDOG_ALLOW_RELEASE, &wd_data->status) // if (c == 'V')
  -> watchdog_ping(wdd)

watchdog_ioctl 支持一系列 watchdog 设置和信息获取操作。

static long watchdog_ioctl(struct file *file, unsigned int cmd,
							unsigned long arg)
	case WDIOC_GETSUPPORT: // 返回watchdog_info结构体
	case WDIOC_GETSTATUS:  // 返回watchdog状态
	case WDIOC_GETBOOTSTATUS:
	case WDIOC_SETOPTIONS:  // start 和stop操作
  	case WDIOC_KEEPALIVE:  // 喂狗
	case WDIOC_SETTIMEOUT:  // 设置超时时间
	case WDIOC_GETTIMEOUT:  // 获取超时时间
	case WDIOC_GETTIMELEFT:  // 获取超时剩余时间
	case WDIOC_SETPRETIMEOUT:  // 设置pretimeout 
	case WDIOC_GETPRETIMEOUT:  // 获取pretimeout 

3.4 watchdog 喂狗

用户空间 watchdog(busybox)

watchdog 是 busybox 中的一个工具,通过watchdog -T 60 -t /dev/watchdog0,每 30秒喂一次狗,60秒没有喂狗则重启。

watchdog 是 busybox 中的一个工具,通过watchdog -T  60 -t /dev/watchdog0,每 30秒喂一次狗,60秒没有喂狗则重启。
Usage: watchdog [-t N[ms]] [-T N[ms]] [-F] DEV

Periodically write to watchdog device DEV

        -T N    Reboot after N seconds if not reset (default 60)
        -t N    Reset every N seconds (default 30)
        -F      Run in foreground

Use 500ms to specify period in milliseconds

watchdog 内部大概实现如下:

watchdog_main
  ->shutdown_on_signal // watchdog收到异常信号退出时调用,关闭watchdog。
    ->shutdown_watchdog // 关闭watchdog。
  ->watchdog_open  // 打开 /dev/watchdog* 设备
  ->WDIOC_SETOPTIONS  // 启动watchdog。
  ->WDIOC_SETTIMEOUT  // 设置timeout。
  ->while(1)  // 循环写空内容,然后睡眠。

内核空间喂狗

在内核空间也有一个定时器定时喂狗,流程如下:

1、在 watchdog_dev_init 接口中,注册了一个优先级为 MAX_RT_PRIO - 1、调度策略为 SCHED_FIFO、名为 watchdogd 的内核线程;

struct sched_param param = {.sched_priority = MAX_RT_PRIO - 1,};
watchdog_kworker = kthread_create_worker(0, "watchdogd");
sched_setscheduler(watchdog_kworker->task, SCHED_FIFO, &param);

2、在注册 watchdog 设备时,初始化了一个 kthread_work 结构体,这个结构体表示一个内核线程工作项,用于调度和执行异步任务。kthread_init_work 函数将工作项与一个 watchdog_ping_work 关联起来,这个处理函数将在工作项被执行时调用;

kthread_init_work(&wd_data->work, watchdog_ping_work);

3、 在注册 watchdog 设备时,还会创建一个定时器,定时器超时接口是 watchdog_timer_expired,定时器在 watchdog_start 时会被开启;

hrtimer_init(&wd_data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
wd_data->timer.function = watchdog_timer_expired;
hrtimer_start(&wd_data->timer, t, HRTIMER_MODE_REL_HARD);

4、在定时器超时接口 watchdog_timer_expired 中,使用 kthread_queue_work 接口将 kthread_work 工作项 wd_data->work 添加到了 watchdog 工作线程 watchdog_kworker 的工作队列中,使得工作线程可以异步执行该工作项。

static enum hrtimer_restart watchdog_timer_expired(struct hrtimer *timer)
{
	struct watchdog_core_data *wd_data;

	wd_data = container_of(timer, struct watchdog_core_data, timer);

	kthread_queue_work(watchdog_kworker, &wd_data->work);
	return HRTIMER_NORESTART;
}

5、 wd_data->work 调用接口为 watchdog_ping_work ,改接口中执行看门狗的 ping 或者 start 动作实现看门狗喂狗,然后在watchdog_update_worker 接口中计算合适的下次喂狗时间,并重启定时器。

static void watchdog_ping_work(struct kthread_work *work)
  -> __watchdog_ping // if (watchdog_worker_should_ping(wd_data))
    -> wdd->ops->ping(wdd);  // if (wdd->ops->ping)
	-> wdd->ops->start(wdd); // else
	-> watchdog_update_worker(wdd);
      -> hrtimer_start

总结一下,watchdog 驱动中,通过创建一个定时器,并在定时器的超时函数中将看门狗喂狗函数添加到看门狗线程的工作队列中,实现当定时器超时时调用喂狗函数。并在喂狗函数中,计算合适的下次喂狗时间并重启定时器,由此实现了反复喂狗。

疑问 or bug?

上面提到的内核定时器喂狗需要配合用户空间喂狗时才能生效,单独内核空间定时器喂狗一段时间后定时器将不再刷新,只有在用户空间喂狗的前提下,内核空间喂狗的定时器才会刷新!!?那么内核空间定时器喂狗保留的意义是什么?这地方是个 bug 还是设计的就是如此,有大佬清楚的话可以一起讨论下。

代码分析如下:

上面提到,内核喂狗定时器任务 watchdog_ping_work 接口中,执行看门狗的 ping 或者 start 动作实现看门狗喂狗,然后在watchdog_update_worker 接口中计算合适的下次喂狗时间,并重启定时器

static inline void watchdog_update_worker(struct watchdog_device *wdd)
  -> ktime_t t = watchdog_next_keepalive(wdd);  // 计算下次喂狗时间t
  -> hrtimer_start(&wd_data->timer, t, HRTIMER_MODE_REL_HARD) // if (t > 0),更新定时器

下次喂狗时间通过 watchdog_next_keepalive 接口计算:

static ktime_t watchdog_next_keepalive(struct watchdog_device *wdd)
{
	struct watchdog_core_data *wd_data = wdd->wd_data;
	unsigned int timeout_ms = wdd->timeout * 1000;
	ktime_t keepalive_interval;
	ktime_t last_heartbeat, latest_heartbeat;
	ktime_t virt_timeout;
	unsigned int hw_heartbeat_ms;

	if (watchdog_active(wdd))
		virt_timeout = ktime_add(wd_data->last_keepalive,
					 ms_to_ktime(timeout_ms));
	else
		virt_timeout = wd_data->open_deadline;

	hw_heartbeat_ms = min_not_zero(timeout_ms, wdd->max_hw_heartbeat_ms);
	keepalive_interval = ms_to_ktime(hw_heartbeat_ms / 2);

	/*
	 * To ensure that the watchdog times out wdd->timeout seconds
	 * after the most recent ping from userspace, the last
	 * worker ping has to come in hw_heartbeat_ms before this timeout.
	 */
	last_heartbeat = ktime_sub(virt_timeout, ms_to_ktime(hw_heartbeat_ms));
	latest_heartbeat = ktime_sub(last_heartbeat, ktime_get());
	if (ktime_before(latest_heartbeat, keepalive_interval))
		return latest_heartbeat;
	return keepalive_interval;
}

分析该接口,主要有这么几个变量:

virt_timeout = ktime_add(wd_data->last_keepalive,  ms_to_ktime(timeout_ms)); 
// 下次超时时间,是 last_keepalive 时间 + watchdog timeout 时间

last_heartbeat = ktime_sub(virt_timeout, ms_to_ktime(hw_heartbeat_ms));  
// 理论最近一次的喂狗时间,要根据 max_hw_heartbeat_ms 时间和 timeout 时间稍微提前一点

返回值1:latest_heartbeat = ktime_sub(last_heartbeat, ktime_get());  
// 理论时间减去当前时间,是还差多久需要喂狗的时间

返回值2:keepalive_interval = ms_to_ktime(hw_heartbeat_ms / 2); 
// keepalive_interval是根据看门狗设置的 max_hw_heartbeat_ms 计算的还差多久需要喂狗的时间

该接口返回值当前时间到下次喂狗时间的差值,有两种可能的返回值:

  • 返回值 keepalive_interval 是根据watchdog驱动设置的 wdd->timeoutwdd->max_hw_heartbeat_ms 计算出的,timeout 和 max_hw_heartbeat_ms 设置确定后,该值就不变了;
  • 返回值 latest_heartbeat 是先根据上次更新 wd_data->last_keepalive 值的时间计算出一个理论下次喂狗时间 last_heartbeat,该理论时间减去当前时间 ktime_sub(last_heartbeat, ktime_get()) 得到 latest_heartbeat
  • 返回值是判断 latest_heartbeat 和 keepalive_interval 的较小值,返回较小值;

问题:
但是,wd_data->last_keepalive 只在 wdg_start 和用户空间喂狗函数 watchdog_ping 接口中会更新,在内核定时器喂狗任务接口中,不会更新 wd_data->last_keepalive 值!!

static int watchdog_ping(struct watchdog_device *wdd)
{
	struct watchdog_core_data *wd_data = wdd->wd_data;

	if (!watchdog_active(wdd) && !watchdog_hw_running(wdd))
		return 0;

	set_bit(_WDOG_KEEPALIVE, &wd_data->status);

	wd_data->last_keepalive = ktime_get();  // 更新 wd_data->last_keepalive
	return __watchdog_ping(wdd);
}
// 内核定时器的喂狗接口,接口内不会更新 wd_data->last_keepalive
static void watchdog_ping_work(struct kthread_work *work)
{
	struct watchdog_core_data *wd_data;

	wd_data = container_of(work, struct watchdog_core_data, work);

	mutex_lock(&wd_data->lock);
	if (watchdog_worker_should_ping(wd_data))
		__watchdog_ping(wd_data->wdd);
	mutex_unlock(&wd_data->lock);
}
  • 当 last_keepalive 不再更新,通过 latest_heartbeat = ktime_sub(last_heartbeat, ktime_get()); 计算出的值将是个负值(linux 中 ktime_t 类型是一个有符号数);
  • watchdog_next_keepalive 接口返回一个负值
  • hrtimer_start(&wd_data->timer, t, HRTIMER_MODE_REL_HARD); 设置的定时器超时时间入参 t 是一个负值

对于 hrtimer_start 设置一个负值的超时时间是怎么处理的没有再细追,但是实际测试下来,的确没有再继续喂狗!

所以如果没有用户空间的喂狗情况下,只靠内核空间是无法实现定时喂狗的。

3.5 watchdog pretimeout 和 governor

  • pretimeout 区别于 timeout,某些 watchdog 触发 timeout 后立即重启了,来不及做一些现场保存等动作。
  • pretimeout 是指在 timeout 之前的设置的一个超时时间,此时软件还处于可控状态,可以做一些预警和提前保存的动作。
  • 触发 pretimeout 调用指定的 governor 可以执行不同动作。
  • 支持 pretimeout 的 watchdog options 包含 WDIOF_PRETIMEOUT。
int watchdog_register_governor(struct watchdog_governor *gov);--governor的注册和注销接口。
void watchdog_unregister_governor(struct watchdog_governor *gov);

int watchdog_register_pretimeout(struct watchdog_device *wdd);--pretimeout注册和注销接口。
void watchdog_unregister_pretimeout(struct watchdog_device *wdd);
int watchdog_pretimeout_available_governors_get(char *buf);
int watchdog_pretimeout_governor_get(struct watchdog_device *wdd, char *buf);--设置/获取pretimeout对应的governor。
int watchdog_pretimeout_governor_set(struct watchdog_device *wdd,
                     const char *buf);

注册governor:

int watchdog_register_governor(struct watchdog_governor *gov)
	-> list_add(&priv->entry, &governor_list) // 将gov添加到governor_list

    // 如果gov是default gov,将所有wdd的gov设置为当前gov
	if (!strncmp(gov->name, WATCHDOG_PRETIMEOUT_DEFAULT_GOV,
		     WATCHDOG_GOV_NAME_MAXLEN)) {
		default_gov = gov;

		list_for_each_entry(p, &pretimeout_list, entry)
			if (!p->wdd->gov)
				p->wdd->gov = default_gov;
	}

设置 watchdog 设备的 governor:

int watchdog_pretimeout_governor_set(struct watchdog_device *wdd,
				     const char *buf)
  -> find_governor_by_name(buf);
  -> wdd->gov = priv->gov;

调用 governor:

void watchdog_notify_pretimeout(struct watchdog_device *wdd)
	-> wdd->gov->pretimeout(wdd);

四、softdog

softdog 驱动通过软件模拟 watchdog 实现看门狗功能。

4.1 softdog_init

softdog_init 流程与正常硬件驱动的 watchdog 类似,只是实现了一个 softwatchdog 的定时器,该定时器在 ping 接口会被反复重启,当定时器超时也就说明软件没有及时喂狗,触发定时器超时函数,在超时函数里执行重启或者 panic 操作。

static int __init softdog_init(void)
  // 正常看门狗设备初始化
	watchdog_init_timeout(&softdog_dev, soft_margin, NULL);
	watchdog_set_nowayout(&softdog_dev, nowayout);
	watchdog_stop_on_reboot(&softdog_dev); 

  // softdog使用的定时器
	hrtimer_init(&softdog_ticktock, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	softdog_ticktock.function = softdog_fire;

  // 设置pretimeout的定时器,超时接口softdog_pretimeout中调用watchdog_notify_pretimeout
	if (IS_ENABLED(CONFIG_SOFT_WATCHDOG_PRETIMEOUT)) {
		softdog_info.options |= WDIOF_PRETIMEOUT;
		hrtimer_init(&softdog_preticktock, CLOCK_MONOTONIC,
			     HRTIMER_MODE_REL);
		softdog_preticktock.function = softdog_pretimeout;
	}

  // 看门狗设备注册
	ret = watchdog_register_device(&softdog_dev);
	if (ret)
		return ret;
}
module_init(softdog_init);

4.2 softdog_ping

softdog_ping 实现 softdog 喂狗,喂狗函数里是重新启动 softdog timeout 和 pretimeout 的定时器。

static int softdog_ping(struct watchdog_device *w)
{
	if (!hrtimer_active(&softdog_ticktock))
		__module_get(THIS_MODULE);
	hrtimer_start(&softdog_ticktock, ktime_set(w->timeout, 0),
		      HRTIMER_MODE_REL);

	if (IS_ENABLED(CONFIG_SOFT_WATCHDOG_PRETIMEOUT)) {
		if (w->pretimeout)
			hrtimer_start(&softdog_preticktock,
				      ktime_set(w->timeout - w->pretimeout, 0),
				      HRTIMER_MODE_REL);
		else
			hrtimer_cancel(&softdog_preticktock);
	}

	return 0;
}

4.3 softdog_fire

softdog_fire 是 softdag timeout 定时器超时函数,函数内部执行重启或者 panic 动作。

static enum hrtimer_restart softdog_fire(struct hrtimer *timer)
{
	module_put(THIS_MODULE);
	if (soft_noboot) {
		pr_crit("Triggered - Reboot ignored\n");
	} else if (soft_panic) {
		pr_crit("Initiating panic\n");
		panic("Software Watchdog Timer expired");
	} else {
		pr_crit("Initiating system reboot\n");
		emergency_restart();
		pr_crit("Reboot didn't ?????\n");
	}

	return HRTIMER_NORESTART;
}
参考:
Linux watchdog子系统概述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1902047.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

安装 tesseract

安装 tesseract 1. Ubuntu-24.04 安装 tesseract2. Ubuntu-24.04 安装支持语言3. Windows 安装 tesseract4. Oracle Linux 8 安装 tesseract 1. Ubuntu-24.04 安装 tesseract sudo apt install tesseract-ocr sudo apt install libtesseract-devreference: https://tesseract-…

AI多模态教程:Qwen-VL多模态大模型实践指南

一、模型介绍 Qwen-VL,由阿里云研发的大规模视觉语言模型(Large Vision Language Model, LVLM),代表了人工智能领域的一个重大突破。该模型具有处理和关联图像、文本、检测框等多种类型数据的能力,其输出形式同样多样…

进程控制-fork函数

一个进程,包括代码、数据和分配给进程的资源。 fork ()函数通过系统调用创建一个与原来进程几乎完全相同的进程,也就是两个进程可以做完全相同的事,但如果初始参数或者传入的变量不同,两个进程也可以做不同…

3101.力扣每日一题7/6 Java(接近100%解法)

博客主页:音符犹如代码系列专栏:算法练习关注博主,后期持续更新系列文章如果有错误感谢请大家批评指出,及时修改感谢大家点赞👍收藏⭐评论✍ 目录 思路 解题方法 时间复杂度 空间复杂度 Code 思路 主要是基于对…

WPF中Background=“{x:Null}“ 和 Transparent

WPF中关于背景透明和背景无 此时&#xff0c;我代码中是写的有有个控件&#xff0c;一个Border &#xff0c;一个TextBox &#xff0c;范围都是全屏这么大&#xff0c;可以输入TextBox 因为&#xff0c;当border没有设置背景的时候&#xff0c;实际上是&#xff1a; <Borde…

连锁门店如何快速联网

随着新零售业态的发展&#xff0c;连锁门店的运营模式逐渐转为数字化运营&#xff0c;新增了诸如收银PoS、扫码枪、摄像头等数字化终端。这些数字化的业务应用都需要依托稳定可靠的网络才能正常运转&#xff0c;在这样的背景下&#xff0c;连锁门店对网络连接的需求显得尤为关键…

【HICE】转发服务器实验

1.在本地主机上操作 2.在客户端操作设置主机的IP地址为dns 3.测试,客户机是否能ping通

机器学习——无监督学习(k-means算法)

1、K-Means聚类算法 K表示超参数个数&#xff0c;如分成几个类别&#xff0c;K值就取多少。若无需求&#xff0c;可使用网格搜索找到最佳的K。 步骤&#xff1a; 1、随机设置K个特征空间内的点作为初始聚类中心&#xff1b; 2、对于其他每个点计算到K个中心的距离&#xff0c;…

【云计算】公有云、私有云、混合云、社区云、多云

公有云、私有云、混合云、社区云、多云 1.云计算的形态1.1 公有云1.2 私有云1.3 混合云1.4 社区云1.5 多云1.5.1 多云和混合云之间的关系1.5.2 多云的用途1.5.3 影子 IT 和多云1.5.4 优缺点 2.不同云形态的对比 1.云计算的形态 张三⾃⼰在家做饭吃&#xff0c;这是 私有云&…

免费去马赛克软件,亲测支持视频和图片,这AI功能逆天了!

有小伙伴私信问阿星有什么去除马赛克的免费软件&#xff0c;求推荐好用的去马赛克软件。 市面上去马赛克的软件多如牛毛&#xff0c;但真正好用的真不多&#xff0c;而免费的是更少。今天阿星就分享一款 AI智能去马赛克软件&#xff0c;免费使用。软件支持去除图片和视频的马赛…

【web前端HTML+CSS+JS】--- HTML学习笔记01

学习链接&#xff1a;黑马程序员pink老师前端入门教程&#xff0c;零基础必看的h5(html5)css3移动端前端视频教程_哔哩哔哩_bilibili 学习文档&#xff1a; Web 开发技术 | MDN (mozilla.org) 一、前后端工作流程 WEB模型&#xff1a;前端用于采集和展示信息&#xff0c;中…

Windows上Docker的安装与初体验

Docker Desktop下载地址 国内下载地址 一、基本使用 1. 运行官方体验镜像 docker run -d -p 80:80 docker/getting-started执行成功 停止体验服务 docker stop docker/getting-started删除体验镜像 docker rmi docker/getting-started2. 修改docker镜像的存储位置 3. …

【扩散模型】LCM LoRA:一个通用的Stable Diffusion加速模块

潜在一致性模型&#xff1a;[2310.04378] Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference (arxiv.org) 原文&#xff1a;Paper page - Latent Consistency Models: Synthesizing High-Resolution Images with Few-Step Inference (…

IDEA安装IDE Eval Reset插件,30天自动续期,无限激活

第一步&#xff1a; 下载idea 注意&#xff1a;版本要是2021.2.2以下 第二步&#xff1a;快捷键CtrlAlts打开设置 第三步&#xff1a;打开下图中蓝色按钮 第四步&#xff1a;点击弹窗的 “” &#xff0c;并输入 plugins.zhile.io 点击 “ok” 第五步&#xff1a;搜索IDE Ea…

强化学习编程实战-1-一个及其简单的强化学习实例(多臂赌博机)

1.1 多臂赌博机 一台拥有K个臂的机器&#xff0c;玩家每次可以摇动K个臂中的一个&#xff0c;摇动后&#xff0c;会吐出数量不等的金币&#xff0c;吐出金币的数量服从一定的概率分布&#xff0c;而且不同臂的概率分布不同。 多臂赌博机的问题是&#xff1a;假设玩家共有N次摇地…

2024上半年网络工程师考试《应用技术》试题二

试题二(20分) 阅读以下说明,回答问题,将解答填入对应的解答栏内。 某单位网络拓扑如下图所示.SW1、SW2为核心层交换机&#xff0c;PC网关配置在核心层&#xff0c;SW3-SW4为接入层交换机,行政部PC划为vlan10,销售部PC划为vlan20。 【问题1】(4分) 要求实现骨干链路冗余&…

golang线程池ants-实现架构

1、总体架构 ants协程池&#xff0c;在使用上有多种方式(使用方式参考这篇文章&#xff1a;golang线程池ants-四种使用方法)&#xff0c;但是在实现的核心就一个&#xff0c;如下架构图&#xff1a; 总的来说&#xff0c;就是三个数据结构&#xff1a; Pool、WorkerStack、goW…

Matplotlib Artist Axes

在简介里介绍了很多了&#xff0c;这里补充一点 Axes包含一个属性patch&#xff0c;是Axes对应的方框&#xff0c;可以用来设置Axes的相关属性 ax fig.add_subplot() rect ax.patch # a Rectangle instance rect.set_facecolor(green) Axes有以下方法 Axes helper metho…

五、保存数据到Excel、sqlite(爬虫及数据可视化)

五、保存数据到Excel、sqlite&#xff08;爬虫及数据可视化&#xff09; 1&#xff0c;保存数据到excel1.1 保存九九乘法表到excel&#xff08;1&#xff09;代码testXwlt.py&#xff08;2&#xff09;excel保存结果 1.2 爬取电影详情并保存到excel&#xff08;1&#xff09;代…

Java之网络面试经典题(一)

目录 ​编辑 一.Session和cookie Cookie Session 二.HTTP和HTTPS的区别 三.浅谈HTTPS为什么是安全的&#xff1f; 四.TCP和UDP 五.GET和Post的区别 六.forward 和 redirect 的区别&#xff1f; 本专栏全是博主自己收集的面试题&#xff0c;仅可参考&#xff0c;不能相…