Python实现ABC人工蜂群优化算法优化卷积神经网络分类模型(CNN分类算法)项目实战

news2024/11/19 20:35:39

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

人工蜂群算法(Artificial Bee Colony, ABC)是由Karaboga于2005年提出的一种新颖的基于群智能的全局优化算法,其直观背景来源于蜂群的采蜜行为,蜜蜂根据各自的分工进行不同的活动,并实现蜂群信息的共享和交流,从而找到问题的最优解。人工蜂群算法属于群智能算法的一种。 

本项目通过ABC人工蜂群优化算法优化卷积神经网络分类模型。    

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据: 

关键代码:

3.2数据缺失查看

使用Pandas工具的info()方法查看数据信息:

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码: 

3.3数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:  

4.探索性数据分析

4.1 y变量柱状图

用Matplotlib工具的plot()方法绘制柱状图:

4.2 y=1样本x1变量分布直方图

用Matplotlib工具的hist()方法绘制直方图:

4.3 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

5.3 数据样本增维

数据样本增加维度后的数据形状:

6.构建ABC人工蜂群优化算法优化CNN分类模型

主要使用ABC人工蜂群优化算法优化CNN分类算法,用于目标分类。  

6.1 ABC人工蜂群优化算法寻找最优参数值 

最优参数:

6.2 最优参数值构建模型 

编号

模型名称

参数

1

CNN分类模型

units=best_units

2

epochs=best_epochs

6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失和准确率曲线图 

7.模型评估

7.1评估指标及结果 

评估指标主要包括准确率、查准率、查全率、F1分值等等。

模型名称

指标名称

指标值

测试集

CNN分类模型

准确率

0.9450

查准率

0.9663

查全率

0.9149

F1分值

0.9399

从上表可以看出,F1分值为0.9399,说明模型效果良好。  

关键代码如下:

7.2 分类报告

从上图可以看出,分类为0的F1分值为0.95;分类为1的F1分值为0.94。  

7.3 混淆矩阵

从上图可以看出,实际为0预测不为0的 有6个样本;实际为1预测不为1的 有16个样本,整体预测准确率良好。

8.结论与展望

综上所述,本文采用了ABC人工蜂群优化算法寻找CNN分类算法的最优参数值来构建分类模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1lqqMS0NS2wOEFQrKvNISXw 
提取码:84g6

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1899793.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

每日一更 EFK日志分析系统

需要docker和docker-compose环境 下面时docker-compose.yaml文件 [rootnode1 docker-EFK]# cat docker-compose.yaml version: 3.3services:elasticsearch:image: "docker.elastic.co/elasticsearch/elasticsearch:7.17.5"container_name: elasticsearchrestart: …

【python】PyQt5可视化开发,如何设计鼠标显示的形状?

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…

Java 面向对象编程(OOP)的四大特征

Java 面向对象编程(OOP)的四大特征 1、抽象2、继承3、 封装4、多态性 💖The Begin💖点点关注,收藏不迷路💖 在Java编程中,面向对象编程(OOP)是一个核心概念。OOP的四大基…

Cgi上传文件 注意事项

//核心代码 ofstream outfile("/opt/software/" file.getFilename(), ios::out | ios::binary); outfile << file.getData(); //错误方式&#xff1a;outfile << file.getData() <<endl; outfile.close(); 参考博客&#xff1a; https://blog.cs…

设计模式探索:代理模式

1. 什么是代理模式 定义 代理模式是一种结构型设计模式&#xff0c;通过为其他对象提供一种代理以控制对这个对象的访问。代理对象在客户端和实际对象之间起到中介作用&#xff0c;可以在不改变真实对象的情况下增强或控制对真实对象的访问。 目的 代理模式的主要目的是隐…

基于深度学习的软件漏洞检测模型在现实数据集上的表现

软件漏洞对日常软件系统的影响令人担忧。尽管已经提出了基于深度学习模型的漏洞检测方法&#xff0c;但这些模型的可靠性仍然是一个重大问题。先前的评估报告这些模型具有高达99%的召回率/F1分数&#xff0c;但研究发现&#xff0c;这些模型在实际应用场景下的表现并不佳&#…

【Python系列】数字的bool值

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…

【Qwen2部署实战】Ollama上的Qwen2-7B:一键部署大型语言模型指南

系列篇章&#x1f4a5; No.文章1【Qwen部署实战】探索Qwen-7B-Chat&#xff1a;阿里云大型语言模型的对话实践2【Qwen2部署实战】Qwen2初体验&#xff1a;用Transformers打造智能聊天机器人3【Qwen2部署实战】探索Qwen2-7B&#xff1a;通过FastApi框架实现API的部署与调用4【Q…

Java | Leetcode Java题解之第218题天际线问题

题目&#xff1a; 题解&#xff1a; class Solution {public List<List<Integer>> getSkyline(int[][] buildings) {PriorityQueue<int[]> pq new PriorityQueue<int[]>((a, b) -> b[1] - a[1]);List<Integer> boundaries new ArrayList&l…

FIND_IN_SET使用案例--[sql语句根据多ids筛选出对应数据]

一 FIND_IN_SET select id,system_ids from intellect_client_info where FIND_IN_SET(5, system_ids) > 0;

做测试/爬虫 selenium 元素定位 谷歌浏览器 插件推荐,提高元素定位效率

注:插件均在谷歌应用商店 下载 1.XPath Helper 插件 作用&#xff1a;用于Html中对目标字段或者属性值进行匹配 快捷启动&#xff1a;ctrl shift x 示例图如下&#xff1a; 2. ChroPath 插件 作用&#xff1a; 提高元素定位效率 启动&#xff1a;谷歌浏览器 按 F12 -&g…

NASA和IBM推出INDUS:高级科学研究的综合大模型

在最近的一项研究中&#xff0c;来自美国宇航局和IBM的一组研究人员合作开发了一种模型&#xff0c;该模型可应用于地球科学&#xff0c;天文学&#xff0c;物理学&#xff0c;天体物理学&#xff0c;太阳物理学&#xff0c;行星科学和生物学以及其他多学科学科。当前的模型&am…

SSM贫困生申请管理系统-计算机毕业设计源码84308

摘要 随着教育信息化的不断推进&#xff0c;越来越多的高校开始借助信息技术手段提升贫困生申请管理的效率与准确性。为此&#xff0c;我们设计并实现了SSM贫困生申请管理系统&#xff0c;旨在通过信息化手段优化贫困生申请流程&#xff0c;提高管理效率&#xff0c;为贫困生提…

【IT领域新生必看】Java编程中的神奇对比:深入理解`equals`与`==`的区别

文章目录 引言什么是操作符&#xff1f;基本数据类型的比较示例&#xff1a; 引用类型的比较示例&#xff1a; 什么是equals方法&#xff1f;equals方法的默认实现示例&#xff1a; 重写equals方法示例&#xff1a; equals与的区别比较内容不同示例&#xff1a; 使用场景不同示…

LeetCode题练习与总结:排序链表--148

一、题目描述 给你链表的头结点 head &#xff0c;请将其按 升序 排列并返回 排序后的链表 。 示例 1&#xff1a; 输入&#xff1a;head [4,2,1,3] 输出&#xff1a;[1,2,3,4]示例 2&#xff1a; 输入&#xff1a;head [-1,5,3,4,0] 输出&#xff1a;[-1,0,3,4,5]示例 3&am…

字节码编程javassist之helloworld

写在前面 源码 。 本文一起来看下&#xff0c;如何使用javassist来生成一个helloworld程序。 1&#xff1a;程序 package com.dahuyou.javassist.helloworld;import javassist.*; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; impor…

收银系统源码-营销活动-积分商城

1. 功能描述 营运抽奖&#xff1a;智慧新零售收银系统&#xff0c;线上商城的营销插件&#xff0c;由商户运营&#xff0c;用户通过多种渠道可以获取积分&#xff0c;不仅支持在收银端抵用&#xff0c;还可以在积分商城内兑换优惠券或者真实商品&#xff0c;提升会员活跃度&am…

苹果电脑清理app垃圾高效清理,无需专业知识

在我们的日常使用中&#xff0c;苹果电脑以其优雅的设计和强大的功能赢得了广泛的喜爱。然而&#xff0c;即便是最高效的设备&#xff0c;也无法免俗地积累各种不必要的文件和垃圾&#xff0c;特别是app垃圾。所以&#xff0c;苹果电脑清理app垃圾高效清理&#xff0c;对于大多…

UE5 视频播放(自动播放和自动清除MediaTexture)

媒体播放器的打开时播放和媒体纹理的自动清除 。 在UE5开发视频播放时&#xff0c;遇到了闪帧的现象。合理选择这两个功能可解决。

AE的合成

目录 合成的概念 合成设置 预设 像素长宽比 分辨率​编辑 开始时间码和持续时间 背景颜色 合成的实战理解 在AE的操作界面中&#xff0c;当我们新建了一个项目之后&#xff0c;画面中最主要的位置显示的是新建合成 合成的概念 AE是一款专业特效合成软件&#xff0c;可…