系列文章目录
- Pandas数据可视化
- 解决不显示中文和负号问题
- matplotlib数据可视化
- seaborn数据可视化
- pyecharts数据可视化
- 优衣库数据分析案例
文章目录
- 系列文章目录
- 前言
- 1. Pandas数据可视化
- 1.1 案例解析:代码实现
- 2. 解决不显示中文和负号问题
- 3. matplotlib数据可视化
- 1.1 案例解析:代码实现
- 4. seaborn数据可视化
- 1.1 案例解析:代码实现
- 5. pyecharts数据可视化
- 1.1 案例解析:代码实现
- 6. 优衣库数据分析案例
- 1.1 案例解析:代码实现
前言
本文主要通过大案例的方式详解了Pandas数据可视化,matplotlib数据可视化,seaborn数据可视化,pyecharts数据可视化。
提示:以下是本篇文章正文内容,下面案例可供参考
1. Pandas数据可视化
1.1 案例解析:代码实现
pandas的df和s对象绘图, 是通过内置matplotlib模块的pyplot类实现
# 导入模块
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# 可以通过图表快速高效查看出数据之间的规律,潜在一些结论
# 加载数据集
df = sns.load_dataset('anscombe', data_home='./data/seaborn-data/')
df
# 查看每份子集中x和y列的统计描述信息
df.groupby('dataset').describe()
# 获取四份子集数据
df1 = df.query('dataset=="I"')
df2 = df.query('dataset=="II"')
df3 = df.query('dataset=="III"')
df4 = df.query('dataset=="IV"')
# 查建画布
# figsize设置图表的大小, 宽高
fig = plt.figure(figsize=(16, 8))
# 设置画布的标题
fig.suptitle('Anscombe Data')
# 创建四个子图
# 2,2 -> 两行两列,四个图
# 1,2,3,4 -> 每个子图所在的位置
axes1 = fig.add_subplot(2,2,1)
axes2 = fig.add_subplot(2,2,2)
axes3 = fig.add_subplot(2,2,3)
axes4 = fig.add_subplot(2,2,4)
# 绘制图形
axes1.plot(df1['x'], df1['y'], 'o')
axes2.plot(df2['x'], df2['y'], 'o')
axes3.plot(df3['x'], df3['y'], 'o')
axes4.plot(df4['x'], df4['y'], 'o')
# 给每个子图添加标题
axes1.set_title('dataset_1')
axes2.set_title('dataset_2')
axes3.set_title('dataset_3')
axes4.set_title('dataset_4')
plt.show()
# pandas绘图
# df对象绘图
# 图形的x轴是df的行索引值
# 图形的y轴是每个数值列的值
# 当前df1有两列数值列, 绘制出两条折线
# 默认绘制折线图
df1.plot(kind='line')
plt.show()
# 柱状图
df1.plot(kind='bar')
# s对象绘图
# 图形x轴是s对象的索引值
# 图形y轴是s对象的值
df1['x'].plot()
2. 解决不显示中文和负号问题
-
将 simhei.ttf 字体文件放到
/export/server/anaconda3/lib/python3.8/site-packages/matplotlib/mpl-data/fonts/ttf
目录下-
如何查看matplotlibrc文件所在位置
-
ttf目录是在
mpl-data/fonts
import matplotlib matplotlib.matplotlib_fname()
!
-
-
在 matplotlibrc 文件中增加以下内容
font.family : sans-serif font.sans-serif : SimHei axes.unicode_minus : False
-
删除缓存文件
cd /root/.cache rm -rf matplotlib
-
重启jupyter notebook
3. matplotlib数据可视化
1.1 案例解析:代码实现
# 绘制折线图, 默认图表 -> 两个变量之间的关系
# 不指定x轴和y轴值, x轴是使用行索引值, y中是数值列值
# df1.plot()
# df1.plot.line()
# df1.plot(kind='line')
# 指定图表的x轴值和y轴值
df1.plot(x='x', y='y')
plt.show()
# 绘制柱状图 展示不同类别的信息情况
df1.plot.bar()
# 绘制堆积柱状图
df1.plot(kind='bar', stacked=True)
df1.plot.bar(x='x',y='y')
plt.show()
# 水平条形图 -> 柱状图进行旋转
df1.plot.barh()
# 水平堆积条形图
df1.plot.barh(stacked=True, figsize=(16, 8), grid=True)
plt.show()
# 绘制饼图 -> 查看不同类型的占比情况
# autopct:添加百分比标签
# radius:圆直径大小,最大1
df1.plot.pie(y='y', autopct='%.2f%%', radius=0.9, figsize=(16,8))
plt.show()
# 散点图 -> 查看数据分布情况
# grid:添加网格线
df1.plot(kind='scatter',x='x',y='y', grid=True)
plt.show()
# 气泡图 -> 通过散点图api绘制
# 在散点图二维平面上再通过点的大小增加第三个维度
# s:点的大小, 第三个维度
df1.plot.scatter(x='x', y='y', grid=True, s=df1['x']*100)
# 面积图
# 面积堆积图
df1.plot.area()
df1.plot.area(stacked=False)
# 箱线图 -> 查看数据的最小值,最大值, 1/4分位值, 中位值, 3/4分位值, 离群值(异常值)
# 异常值, 数据值普遍分布在 1~100, 有几个值为 1w, 2w, 这些值就是离群值
df1.boxplot()
# 直方图 -> 统计不同组数据出现的次数, y轴次数
# bins=10:默认分成10组
df1.plot.hist()
plt.show()
df1['x'].plot.hist()
plt.show()
# 蜂巢图 ->了解
# gridsize=12设定蜂箱格子的大小,数字越小格子越大
df1.plot.hexbin(x='x', y='y', gridsize=12)
plt.show()
data = pd.read_csv('data/LJdata.csv')
data.head()
# 不同朝向的房源数量柱状图
temp_s = data.groupby(by='朝向')['区域'].count()
temp_s
temp_s.plot.bar(figsize=(16,8))
# 前五朝向房源数量的饼图
sort_s = temp_s.sort_values(ascending=False).head()
sort_s.plot.pie(autopct='%.2f%%', radius=0.9, figsize=(12,6))
plt.show()
4. seaborn数据可视化
1.1 案例解析:代码实现
# 加载数据
tips_df = sns.load_dataset('tips', data_home='./data/seaborn-data')
tips_df
# 散点图
fig = plt.figure(figsize=(16,8))
sns.scatterplot(data=tips_df, x='total_bill', y='tip', hue='sex', style='smoker', size='size')
plt.show()
# 关系散点图
sns.relplot(data=tips_df, x='total_bill', y='tip') # 默认 kind='scatter'
sns.relplot(data=tips_df, x='total_bill', y='tip', kind='line')
plt.show()
# 分类散点图
sns.stripplot(data=tips_df, x='time', y='total_bill')
# 不同日期用餐时间的分类散点图
sns.stripplot(data=tips_df, x='time', y='total_bill', jitter=True, dodge=True, hue='day')
# 在同一个代码块中绘制多个图形, 借助matplotlib包
f = plt.figure()
axes1 = f.add_subplot(2,1,1)
axes2 = f.add_subplot(2,1,2)
# 按照x属性所对应的类别分别展示y属性的值,适用于分类数据
# 不同饭点的账单总金额的散点图
sns.stripplot(data=tips_df, x='time', y='total_bill', ax=axes1)
# hue通用参数按颜色划分
# jitter=True 当数据点重合较多时,尽量分散的展示数据点
# dodge=True 拆分分类
sns.stripplot(data=tips_df, x='time', y='total_bill', jitter=True, dodge=True, hue='day', ax=axes2)
plt.show()
# 小提琴图
# 下图分别描述午餐账单、晚餐账单的最大值、最小值、三个四分位数,以及所有账单金额出现的次数(频率)
sns.violinplot(data=tips_df, x='time', y='total_bill')
plt.show()
# 箱线图 下图分别描述午餐账单、晚餐账单的最大值、最小值、三个四分位数,以及所有账单金额出现的次数(频率)
sns.boxplot(data=tips_df, x='time', y='total_bill', hue='day')
plt.show()
# 分类柱状图
# 下图中黑色的粗线条展示了数据的分布(误差线), 线条越短, 数据分布越均匀
# 下图中每个柱的顶点就是该分类y指定列的平均值 estimator
sns.barplot(data=tips_df, x='day', y='total_bill', estimator=max)
plt.show()
# 分类计数图
# 按x指定的列值分组统计出现次数
# y轴就是出现的次数
sns.countplot(data=tips_df, x='time')
plt.show()
# 矩阵热力图 -> 对df数据样式有要求, 通过透视表转换
# 男女在午餐晚餐的平均消费
new_df = tips_df.pivot_table(index='sex', columns='time', values='total_bill', aggfunc='mean')
print(new_df)
# 输出为热力图:男性在晚餐花费最多
sns.heatmap(data=new_df)
plt.show()
# 成对关系图
sns.pairplot(tips_df)
#sns.pairplot(df) # 全部数值列进行两两组合
#sns.pairplot(df, vars=['列名1', '列名2']) # 指定要组合展示的列名
plt.show()
# 自行调整成对关系图的绘图图形
pair_grid = sns.PairGrid(tips_df)
# 中间轴线上的图设为kdeplot
pair_grid.map_diag(sns.kdeplot)
# 右上设为lineplot
pair_grid.map_upper(sns.lineplot)
# 左下设为scatterplot
pair_grid.map_lower(sns.scatterplot)
plt.show()
5. pyecharts数据可视化
1.1 案例解析:代码实现
# 可以绘制酷炫的图形
# 绘图套路 -> 参考官方示例代码进行修改即可
# 绘制2019年不同国家GDP值的词云图
# 准备要绘制词云图的数据 -> [(国家1, gdp值), (国家2, gdp值), ...]
data = pd.read_csv('data/1960-2019全球GDP数据.csv', encoding='gbk')
data
# 获取year列为2019的数据子集
data_2019= data.query('year==2019')
data_2019
# 通过zip函数将不同列表对应位置的值保存到元组中
a = [1,2,3]
b = [4,5,6]
list(zip(a, b))
data2 = list(zip(data_2019['country'], data_2019['GDP']))
data2
from pyecharts import options as opts # 配置选项
from pyecharts.charts import WordCloud # 词云图
c = (
WordCloud()
# 添加数据
.add(series_name="不同国家GDP", data_pair=data2, word_size_range=[6, 66])
# 设置全局配置
.set_global_opts(
title_opts=opts.TitleOpts(
title="不同国家GDP的词云图", title_textstyle_opts=opts.TextStyleOpts(font_size=10)
),
tooltip_opts=opts.TooltipOpts(is_show=True)
)
# 将html格式的文件保存到指定为止
# .render("basic_wordcloud.html")
)
c.render_notebook()
6. 优衣库数据分析案例
1.1 案例解析:代码实现
# 导入模块
import pandas as pd
# 加载数据集
uniqlo = pd.read_csv('data/uniqlo.csv')
uniqlo.head()
# 查看数据集基本信息
uniqlo.info()
# 查看数值列描述统计指标
uniqlo.describe()
# 查看非数值列描述统计指标
uniqlo.describe(include='object')
# 查看销售金额小于等于0的数据
uniqlo.query('销售金额<=0')
uniqlo[uniqlo['销售金额'] >= 5000]
# 统计不同产品销售数量情况
# 统计不同产品的销售总量
# 分组聚合
uniqlo.groupby(by='产品名称')['产品数量'].sum().sort_values(ascending=False)
pd.pivot_table(data=uniqlo, index='产品名称', values='产品数量', aggfunc='sum')
# 不同产品不同城市销售数量
uniqlo.groupby(by=['产品名称', '城市'])[['产品数量']].sum()
pd.pivot_table(data=uniqlo, index='产品名称', columns='城市', values='产品数量', aggfunc='sum', margins=True)
# 不同产品不同城市以及不同销售渠道的销售数量
uniqlo.groupby(by=['产品名称', '城市', '销售渠道'])[['产品数量']].sum()
pd.pivot_table(data=uniqlo, index='产品名称', columns=['城市', '销售渠道'], values='产品数量', aggfunc='sum')
# 统计不同销售渠道情况
# 统计不同销售渠道的条目数
uniqlo['销售渠道'].value_counts()
uniqlo.groupby(by='销售渠道')['城市'].count()
uniqlo.groupby(by='销售渠道')['城市'].count().plot(kind='bar')
# 统计不同城市不同销售渠道的条目数
uniqlo.groupby(by=['城市','销售渠道'])[['产品数量']].count()
pd.pivot_table(data=uniqlo, index='城市', columns='销售渠道', values='产品数量', aggfunc='count')
# 绘制sns的分类计数图
import matplotlib.pyplot as plt
import seaborn as sns
plt.figure(figsize=(16,8))
sns.countplot(data=uniqlo,y='城市',hue='销售渠道')
plt.show()
# 统计不同城市不同销售渠道的产品总数
uniqlo.groupby(by=['城市', '销售渠道'])[['产品数量']].sum()
pd.pivot_table(data=uniqlo, index='城市', columns='销售渠道', values='产品数量', aggfunc='sum', margins=True)
# 用户消费时间分析
# 不同消费时间的条目数
uniqlo['消费时间'].value_counts()
uniqlo.groupby(by='消费时间')['城市'].count()
# 不同消费时间产品总数
uniqlo.groupby(by='消费时间')['产品数量'].sum()
# 不同城市不同消费时间的产品数量
uniqlo.groupby(by=['消费时间', '城市'])[['产品数量']].sum()
wkd_sales = pd.pivot_table(data=uniqlo,index='消费时间', columns='城市', values='产品数量', aggfunc='sum')
wkd_sales
# 获取第一行数据
wkd_sales.loc['Weekday', :]
wkd_sales.loc['Weekday']
# 统计不同城市不同消费时间日均产品数量
# 在wkd_sales基础上增加两行数据
# 获取一行数据得到s对象, s对象运算操作
wkd_sales.loc['Weekday_avg',:] = wkd_sales.loc['Weekday', :] / 5
wkd_sales.loc['Weekend_avg',:] = wkd_sales.loc['Weekend', :] / 2
wkd_sales
# 销售额和成本之间的关系
# 获取多列数据
uniqlo[['销售金额', '单件成本']]
# 计算相关性系数
uniqlo[['销售金额', '单件成本']].corr()
# 销售金额是所有销售产品数量的总金额, 单件成本是一件产品成本
# 需要先计算单件销售金额 = 销售金额 / 产品数量
# 计算相关性需要先过滤掉异常数据
uniqlo2 = uniqlo[uniqlo['销售金额']>0]
uniqlo2
# 添加新的一列 单件销售金额
uniqlo2['单件销售金额'] = uniqlo2['销售金额'] / uniqlo2['产品数量']
uniqlo2
# 计算单件销售金额和单件成本相关系数
uniqlo2[['单件销售金额', '单件成本']].corr()
# 绘制散点图
sns.scatterplot(data=uniqlo2, x='单件成本', y='单件销售金额')
# 绘制热力图
sns.heatmap(uniqlo2[['单件销售金额', '单件成本']].corr())
所需文件已经上传:第27天