✨ 少年的旅途应是星辰大海 🌏
📃个人主页:island1314
🔥个人专栏:C++学习
🚀 欢迎关注:👍点赞 👂🏽留言 😍收藏 💞 💞 💞
🚀前言
点击跳转到文章【C++学习第十二天——list容器的深度剖析及底层实现】
前面我们已经学习了list容器的相关知识,本文主要介绍STL中另外两种重要的结构,stack和queue。但是在STL中这两者并没有划分在容器范围内,而是将其称为容器适配器。
💥一、容器适配器
1、什么是容器适配器?
适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口。
2、STL标准库中stack和queue的底层适配?
虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配器,这是因为stack和queue只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque,比如:
💥二、双端队列deque的介绍
1、deque的原理介绍
deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。
deque在功能上是vector和list的结合体,如图:
deque并不是真正连续的空间,而是由一小段一小段连续的buff小数组和中控数组(指针数组)构成,实际deque类似于一个动态的二维数组,其底层结构如下图所示:
小数组满了之后不扩容,而是再开辟一小段空间做buff,并且开辟buff数组时并不是从中控数组的开头开始申请的,而是在中间,头插尾插时才向两边申请。
比如:
双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂,如下图所示:
2、deque的缺陷
(1)与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率是必vector高的。
(2)与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段。
(3)但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,并且deque的中间位置的insert 和erase 也要挪动数据,效率并不高。而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构。
3、为什么选择deque作为stack和queue的底层默认容器
stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list。但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:
(1) stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作。
(2) 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长时,deque不仅效率高,而且内存使用率高。
结合了deque的优点,而完美的避开了其缺陷。
💥三、对于stack和queue的使用和模拟实现
1、stack和queue的使用
首先,使用stack和queue需要包含头文件< satck > 和 < queue >。
stack和queue的主要接口十分简单:
代码如下:
#include<stack>
#include<queue>
int main()
{
//stack的使用
stack<int> st;
st.push(1);
st.push(2);
st.push(3);
st.push(4);
while (!st.empty())
{
cout << st.top() << " ";
st.pop();
}
cout << endl;
//queue的使用
queue<int> q;
q.push(1);
q.push(2);
q.push(3);
q.push(4);
while (!q.empty())
{
cout << q.front() << " ";
q.pop();
}
cout << endl;
return 0;
}
2、stack的模拟实现
//template <class T,class Con = list<T>>
//template <class T,class Con = vector<T>>
template <class T,class Con = deque<T>>
class stack
{
public:
void push(const T& x)
{
_con.push_back(x);
}
void pop()
{
_con.pop_back();
}
T& top()
{
return _con.back();
}
const T& top()const
{
return _con.back();
}
bool empty()const
{
return _con.empty();
}
size_t size()const
{
return _con.size();
}
private:
Con _con;
};
3、queue的模拟实现
//template<class T, class Con = list<T>>
template<class T, class Con = deque<T>>
class queue
{
public:
void push(const T& x)
{
_con.push_back(x);
}
void pop()
{
_con.pop_front();
}
T& back()
{
return _con.back();
}
const T& back()const
{
return _con.back();
}
T& front()
{
return _con.front();
}
const T& front()const
{
return _con.front();
}
bool empty()const
{
return _con.empty();
}
size_t size()const
{
return _con.size();
}
private:
Con _con;
};