【 香橙派 AIpro评测】大语言模型实战教程:香橙派 AIpro部署LLMS大模型实站(保姆级教学)

news2025/1/12 20:56:04

引言

OrangePi AIpro 这块板子作为业界首款基于昇腾深度研发的AI开发板,一经发布本博主就火速去关注了,其配备的 8/20TOPS澎湃算力是目前开发板市场中所具备的最大算力,可谓是让我非常眼馋啊!这么好的板子那必须拿来用用,今天也是很荣幸拿到一款 OrangePi AIpro 开发版!于是迫不及待的去开源项目选中了一款LLMS大模型来为部署为大家体验体验。

文章目录

  • 引言
  • 一、香橙派介绍
    • 1.1 香橙派 AIpro 开发版介绍
    • 1.2 到手的第一感觉
    • 1.3 外观对比&开机进入
  • 二、部署LLMS大模型
    • 2.1 项目介绍
    • 2.1 拉取代码到环境
    • 2.2 自定义算子部署
      • 配置protoc 环境
      • 算子编译部署
      • 修改环境变量
      • 编译运行& 依赖安装
    • 2.3 推理启动
    • 2.4 项目体验
  • 三、香橙派 AIpro 的使用体验
    • 3.1 优良的性能
    • 3.2 丰富的项目实战教学
    • 3.3 社区文档的丰富性

一、香橙派介绍

香橙派(Orange Pi)是深圳市迅龙软件有限公司旗下开源产品品牌,成立于2005年,是全球领先的开源硬件和开源软件服务商,致力于让极客、创客、电子爱好者享用到来自中国的优质、低价的科技产品,通过大规模的社会化协作去创建一个更加美好的信息化人类文明。

1.1 香橙派 AIpro 开发版介绍

OrangePi AIpro 是2023.12月初,香橙派联合华为发布了基于昇腾的Orange Pi AIpro开发板,提供8/20TOPS澎湃算力,作为业界首款基于昇腾深度研发的AI开发板 Orange Pi AIpro 不仅集成图形处理器,还有拥有8GB/16GB LPDDR4X,可以外接32GB/64GB/128GB/256GB eMMC模块,支持双4K高清输出,还有很多扩展口这里博主就不介绍了大家直接看图吧。

  • 正面展示
    在这里插入图片描述
  • 背面展示
    在这里插入图片描述

1.2 到手的第一感觉

要问的刚收到板子的心情那当然是非常激动的,刚回来就迫不及待的才开包装给大家展示一下,不多不说香橙派这次外观上没得说,连我一个抠脚大汉都觉得非常精致漂亮。

在这里插入图片描述

1.3 外观对比&开机进入

拆来包装上去看香橙派也是非常深得我心,到手82g 重量刚刚好。整体呢只有大概一个巴掌大小,当然想我这种手大的男同胞可能还没我手掌大哈哈哈,而且这次香橙派的散热风扇也是备受好评已经在群聊里看到不少朋友去夸赞他的质感了,后面博主也回给大家来俩张对比图。

在这里插入图片描述

  • 我这块 OrangePi AIpro 板子提前配备了一张32G的TF卡来进行烧录系统,其背后还有一个 m.2 固态硬盘接口来为我们拓展内存,以运行大型项目。

在这里插入图片描述

  • 树莓派5OrangePi AIpro 散热风扇对比

  • 树莓派5
    在这里插入图片描述

  • 香橙派 AIpro,哈哈哈是不是感觉 香橙派 AIpro 在做工上更精细一些

在这里插入图片描述

  • 开机启动

激动人心的时刻终于来了,开机启动。由于这套开发版内置了 OpenEuler 系统镜像()博主就暂时不烧录其他镜像了,直接开机启动。

  • openEuler 是一由中国开源软件基金会主导,以Linux稳定系统内核为基础,华为深度参与,面向服务器、桌面和嵌入式等的一个开源操作系统。

  • 这里直接插电启动,默认用户名 HwHiAiUser、密码 Mind@123 当然root密码也是一样的

  • 这里我们进来之后可以直接选择链接WiFi 非常便捷

在这里插入图片描述

  • 然后我们打开命令窗查看IP , 由于系统默认支持ssh 远程连接,所以博主这里就直接采用 Sxhell 进行连接
  • 输入ip 选择 HwHiAiUser 登录 密码 Mind@123

在这里插入图片描述

二、部署LLMS大模型

说到大语言模型相信大家都不会陌生,大型语言模型(LLMs)是人工智能文本处理的主要类型,也现在最流行的人工智能应用形态。ChatGPT就是是迄今为止最著名的使用LLM的工具,它由OpenAI的GPT模型的特别调整版本提供动力。

2.1 项目介绍

本来博主是准备来部署一下咱们的,清华大语言模型镜像这个目前也是非常的火啊,吸引了很多人的注意其优秀的性能和GPT3 不相上下,但是由于考虑到咱们目前的内存只有TF卡上的32G就决定去 gitee 上找一个小型一点的大模型来实战一下。

  • 果不其然刚搜索就发现 一个基于香橙派AI Pro 部署的语言大模型项目,这不正好吗?直接开始

在这里插入图片描述

  • 点进去一看发现这是南京大学开源的一套基于香橙派 AIpro部署的Tiny-Llama语言模型
  • (开源地址)

2.1 拉取代码到环境

  • 先cd进入 cd ~/samples 目录
  • 之后直接利用git 拉取我们的项目,git 由于系统镜像自带的有就不用我们手动安装了

在这里插入图片描述

2.2 自定义算子部署

配置protoc 环境

  • 使用wget工具从指定的华为云链接下载 protobuf-all-3.13.0.tar.gz文件
wget  https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/wanzutao/tiny-llama/protobuf-all-3.13.0.tar.gz --no-check-certificate

在这里插入图片描述

  • 解压刚刚下载的文件
tar -zxvf protobuf-all-3.13.0.tar.gz

在这里插入图片描述

这里解压速度非常快,基本一秒就OK了

在这里插入图片描述

  • 进入 protobuf-3.13.0 文件夹中
cd protobuf-3.13.0

更新apt包管理器的软件包列表

apt-get update

在这里插入图片描述

  • 使用apt-get安装必要的构建工具,包括autoconf、automake和libtool,这些工具用于配置和构建开源项目
apt-get install autoconf automake libtool

在这里插入图片描述

  • 生成配置脚本 configure , 运行 ./configure 生成一个Makefile
./autogen.sh
./configure
  • 编译源代码,由于 香橙派 AIpro 是4核64位处理器+ AI处理器支持8个线程,我们我们可以大胆的使用4个并行进程进行编译,以加快编译速度。
  • 编译这里的时候大家就可以放松放松了大概只需要10几分钟就好了
make -j4

在这里插入图片描述

  • 将编译后的二进制文件和库文件安装到系统指定的位置
make install

在这里插入图片描述

  • 更新系统共享库缓存的工具,检查protoc 版本
sudo ldconfig

protoc --version

在这里插入图片描述

算子编译部署

  • 将当前工作目录切换到 tiny_llama

在这里插入图片描述

  • 设置了一个环境变量 ASCEND_PATH,并将其值设为 /usr/local/Ascend/ascend-toolkit/latest
  • export ASCEND_PATH=/usr/local/Ascend/ascend-toolkit/latest
    在这里插入图片描述
  • custom_op/matmul_integer_plugin.cc 文件复制到指定路径
cp custom_op/matmul_integer_plugin.cc $ASCEND_PATH/tools/msopgen/template/custom_operator_sample/DSL/Onnx/framework/onnx_plugin/
  • cd 进入 目标文件夹进行配置
cd $ASCEND_PATH/tools/msopgen/template/custom_operator_sample/DSL/Onnx

在这里插入图片描述

修改环境变量

  • 打开build.sh,找到下面四个环境变量,解开注释并修改如下:
#命令为 vim build.sh

在这里插入图片描述

# 修改内容为
export ASCEND_TENSOR_COMPILER_INCLUDE=/usr/local/Ascend/ascend-toolkit/latest/include
export TOOLCHAIN_DIR=/usr
export AICPU_KERNEL_TARGET=cust_aicpu_kernels
export AICPU_SOC_VERSION=Ascend310B4

在这里插入图片描述
在这里插入图片描述

编译运行& 依赖安装

  • 编译构建项目,进入到构建输出目录以后续处理生成的文
./build.sh
cd build_out/

在这里插入图片描述

  • 生成文件到 customize 到默认目录 $ASCEND_PATH/opp/vendors/
./custom_opp_ubuntu_aarch64.run
  • 删除冗余文件
cd $ASCEND_PATH/opp/vendors/customize
rm -rf op_impl/ op_proto/

在这里插入图片描述

  • 安装依赖:从指定的华为云 PyPI 镜像源安装所需的 Python 包
cd tiny_llama/inference
pip install -r requirements.txt -i https://mirrors.huaweicloud.com/repository/pypi/simple
  • 先cd 回到根目录,在进入家目录,找到咱们的 tiny_llama/inference
    在这里插入图片描述

2.3 推理启动

  • 下载tokenizer文件
cd tokenizer
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/wanzutao/tiny-llama/tokenizer.zip
unzip tokenizer.zip   

在这里插入图片描述

  • 获取onnx模型文件
cd ../model
wget https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/wanzutao/tiny-llama/tiny-llama.onnx
  • 我们在复制代码的时候一定要仔细嗷博主这里少打了一个w 导致并没有获取到模型,后期找了半天才发现错误所以提醒大家一定要注意好每一步
    在这里插入图片描述

  • atc模型转换

atc --framework=5 --model="./tiny-llama.onnx"  --output="tiny-llama" --input_format=ND --input_shape="input_ids:1,1;attention_mask:1,1025;position_ids:1,1;past_key_values:22,2,1,4,1024,64" --soc_version=Ascend310B4 --precision_mode=must_keep_origin_dtype

在这里插入图片描述

2.4 项目体验

好了到这里我们就算是大功告成了,只需要启动一下mian文件就OK了

  • cd tiny_llama/inference 目录下运行命令
python3 main.py

在这里插入图片描述

  • 打开网址进行访问

在这里插入图片描述
在这里插入图片描述

Tiny-Llama这个模型由于尺寸非常小,参数也只有1.1B。所以在我们部署Tiny-Llama这个大语言模型推理过程中,Ai Core的占用率只到60%左右,基本是一秒俩个词左右,速度上是肯定没问题的。后期可以去试试升级一下内存去跑一下当下主流的 千问7B模型 或者 清华第二代大模型拥有 60 亿参数 ChatGLM2 感觉用 OrangePi AIpro 这块板子也是没问题。

三、香橙派 AIpro 的使用体验

3.1 优良的性能

这俩天体验下来 香橙派 AIpro 开发板带给我的感觉还是挺优秀俩个字 ,自从到手了来几乎是不间断地运行,但没有一次自动重启,在持续的高负荷运作中,温度一直保持在50到60°左右,这也体现了 香橙派 AIpro 对温控的把持是非常到位的。

而且还有有目前业界最强大的 8/20TOPS澎湃算力,AI 处理器,丰富的插件扩展口这对未来我们需要做的嵌入式AI 项目,具有良好的支持可玩度非常高,为项目创新和开发人员提供广阔的空间不仅可以做智能家居开发,还能对各种ALot 都可以能应用。
在这里插入图片描述

  • 同时精巧的颜值也是吸引我的一部分,香橙派 AIpro 作为开发板有AI的强大算力和接口的扩展灵活性,和不错的颜值这样的板子谁不爱呢?

3.2 丰富的项目实战教学

这个也是在本博主在思考做什么开源项目的的时候的感受, 香橙派 AIpro 不仅在 gitee 上有很多开源项目,并且在百度 哔哩哔哩 这些平台都有丰富的实战教学这为新手入门极大的降低了难度。

在这里插入图片描述
在这里插入图片描述

3.3 社区文档的丰富性

本着 OrangePi AIpro 这块板子作为基于昇腾深度研发的AI开发板,博主就想想看看华为的昇腾社区有没有什么文档已经学习项目来做一做结果不去不不知道,一看我嘞个乖乖原来资料这么全的嘛?

  • 香橙派AIpro学习资源一站式导航
  • 不仅有各种项目以及官方样例来供我们学习

在这里插入图片描述

  • 在这里你还可以看到各种报错解决方法,以及官方整理好的学习案例推荐
    在这里插入图片描述
    在这里插入图片描述

以上就是本博主这段时间使用的感谢啦!相信你们看到这里也已经迫不及待的想体验体验了,快去部署一个属于你的LLMS大模型咱们下次再见啦。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1897445.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java面试八股之如何提高MySQL的insert性能

如何提高MySQL的insert性能 提高MySQL的INSERT性能可以通过多种策略实现,以下是一些常见的优化技巧: 批量插入: 而不是逐条插入,可以使用单个INSERT语句插入多行数据。例如: INSERT INTO table_name (col1, col2) V…

用Python轻松转换PDF为CSV

数据的可访问性和可操作性是数据管理的核心要素。PDF格式因其跨平台兼容性和版面固定性,在文档分享和打印方面表现出色,尤其适用于报表、调查结果等数据的存储。然而,PDF的非结构化特性限制了其在数据分析领域的应用。相比之下,CS…

AI时代下 AI搜索成“兵家必争之地”

当下,海量信息爆发性增长,用户的搜索需求也从找不到信息转变成找不到“需要的”信息。不过随着AI技术的迅速发展,这个需求将会得到解决,AI搜索也将成为“兵家必争之地”。 在全球范围内,谷歌作为全球最大的搜索引擎公司…

国衍科技——梅雨季节文物保护专家

尊敬的文物保护者们 随着梅雨季节的脚步渐近,湿润的空气和连绵的雨水不仅为我们的生活带来了不便,更为文物保护工作带来了严峻的挑战。在这个季节,文物发霉的风险急剧上升,每一件珍贵的文化遗产都面临着被时间侵蚀的威胁。然而&am…

使用Mybatis批量插入大量数据的实践

前言 在项目开发过程中,我们经常会有批量插入的需求,例如:定时统计任务 但是受限于MySQL中 max_allowed_packet 参数限制,5.7版本默认值为4M,这显然不太符合我们的需求,当然我们也可以通过修改此值来适应…

ChatGPT如何提升论文写作(附指令集合)

先讲前提: ChatGPT无论是3.5还是4.0都存在非常严重的幻觉问题,目前ChatGPT无法替代搜索引擎。 如果你希望得到更加优质的体验,请用GPT-4.0,幻觉问题上比3.5大幅降低 ChatGPT中文版,一站式AI创作平台​aibox365.com …

昇思MindSpore学习笔记4-01生成式--CycleGAN图像风格迁移互换

摘要: 记录了昇思MindSpore AI框架用循环对抗生成网络模型CycleGAN实现图像匹配的方法、步骤。包括环境准备、数据集下载、数据加载和预处理、构建生成器和判别器、优化、模型训练和推理等。 1.模型介绍 1.1模型简介 CycleGAN(Cycle Generative Adversarial Netwo…

Yolo系列——动态卷积

一、为什么要提出动态卷积? 为了更好的将模型部署在边端设备上,需要设计轻量级网络模型。轻量级卷积网络因其较低的运算而限制了CNN的深度(卷积层层数)和宽度(通道数),限制了模型的表达能力&am…

3dmax全景图用什么渲染软件好?渲染100邀请码1a12

全景图是常见的效果图类型,常用于展示大型空间,如展厅、会议室等。全景图的制作需要渲染,下面我介绍几个常用的渲染软件分享给大家。 1、V-Ray:十分流行的渲染引擎,功能强大,它提供了高质量的光线追踪技术…

gitee代码初次上传步骤

ps. 前提是已经下载安装gitee 一、在本地项目目录下空白处右击,选择“Git Bash Here” 二、初始化 git init 三、添加、提交代码(注意add与点之间的空格) git add . git commit -m 添加注释 四、连接、推送到gitee仓库 git remote add …

计算机网络——数据链路层(以太网)

目录 局域网的数据链路层 局域网可按照网络拓扑分类 局域网与共享信道 以太网的两个主要标准 适配器与mac地址 适配器的组成与运作 MAC地址 MAC地址的详细介绍 局域网的mac地址格式 mac地址的发送顺序 单播、多播,广播mac地址 mac帧 如何取用…

C++基石:掌握高效编程的艺术

C 关于命名空间:namespace 上述文档详细介绍了C标准库(Standard C Library)的一些关键约定,这些约定不仅帮助开发者理解如何正确使用库中的功能,也明确了实现者在设计库时的灵活性和限制。下面是对文档中提到的几个要点…

2024-07-05 base SAS programming学习笔记9(variables)

1.在数据集增加累加变量值(SUM) 求和语句(SUM STATEMENT):variableexpression variable是累积求和的变量名,为数值型,默认初始值为0;该variable值则会保留到一个观测 当expression有缺失值,在求…

深度学习Week19——学习残差网络和ResNet50V2算法

文章目录 深度学习Week18——学习残差网络和ResNet50V2算法 一、前言 二、我的环境 三、论文解读 3.1 预激活设计 3.2 残差单元结构 四、模型复现 4.1 Residual Block 4.2 堆叠Residual Block 4.3. ResNet50V2架构复现 一、前言 🍨 本文为🔗365天深度学…

v-html 空格/换行不生效

接口返回的内容如下&#xff1a;有空格有换行&#xff0c;但 使用v-html无效 需加css样式 white-space: pre-wrap; <div class"pretty-html" v-html"Value"></div>.pretty-html {white-space: pre-wrap; /* 保留空格和换行&#xff0c;并允许…

OZON怎么查看竞品数据,OZON怎么找竞品数据

在跨境电商的激烈竞争中&#xff0c;了解和分析竞品数据是每一位卖家优化销售策略、提升市场竞争力的关键步骤。OZON作为俄罗斯领先的电商平台&#xff0c;为卖家提供了丰富的数据分析工具&#xff0c;而萌啦ozon数据作为第三方数据分析平台&#xff0c;更是为卖家提供了更为全…

Linux 进程与计划任务管理

一、程序、进程、线程的概念 1. 程序&#xff1a;是指一组指示计算机或其他具有信息处理能力装置执行动作或做出判断的指令&#xff0c;通常用某种程序设计语言编写&#xff0c;运行于某种目标计算机体系结构上 2. 进程&#xff1a;是计算机中的软件程序关于某数据集合上的一次…

某yi逆向sign值

声明 本文章中所有内容仅供学习交流使用&#xff0c;不用于其他任何目的&#xff0c;不提供完整代码&#xff0c;抓包内容、敏感网址、数据接口等均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff01; 本文章未经…

pdf可以删除其中一页吗?6个软件教你快速进行pdf编辑

pdf可以删除其中一页吗&#xff1f;6个软件教你快速进行pdf编辑 编辑PDF文件并删除特定页面是处理文档时常见的需求&#xff0c;特别是在需要定制或精简文件内容时。以下是几款广受欢迎的PDF编辑软件&#xff0c;它们提供了强大的页面删除功能&#xff0c;帮助用户轻松管理和修…

重新定义 AI 部署效率与性能!ZOLOZ 如何借助 AC2 实现低成本高性能的提优?| AI 案例推荐

AI 容器镜像——面向云上全容器场景 王坚院士提到&#xff0c;算力是人工智能发展的三要素之一&#xff0c;而云计算是最好的提供算力的技术手段&#xff0c;英伟达的黄仁勋也表达过类似的观点。可以说&#xff0c;大模型时代下的 AI&#xff0c;天然就是在云场景里的。 容器…