14-30 剑和诗人4 – 具有长上下文窗口的微调 LLM 的数据设计

news2024/11/27 13:30:50

LLM 中的长上下文窗口的挑战

微调大型语言模型 (LLM) 面临的最大挑战之一在于处理较长的上下文窗口。LLM 经过大量文本数据训练,能够理解和生成类似人类的语言。然而,在推理过程中,这些模型的上下文窗口有限,通常约为 2,048 个标记(约 1,000 个单词)。在处理需要理解和生成长篇内容的任务(例如摘要、问答或创意写作)时,这种限制会带来重大挑战。

当 LLM 遇到超出其上下文窗口的输入时,它一次只能处理一部分信息。这可能会导致几个问题,包括:

  1. 失去语境理解:模型可能难以在长文本中保持连贯性和连续性,因为它在特定时刻只能关注输入的有限部分。这可能导致生成的输出缺乏一致性、无法捕捉重要细节或忽略输入早期部分的关键信息。
  2. 知识整合不完整:LLM 依赖于整合来自各种来源的知识的能力,以生成相关且明智的输出。处理长输入时,模型可能无法一次访问所有必要的信息,从而导致知识整合不完整或不准确。
  3. 资源利用率低:处理长输入通常需要将其拆分成较小的块并按顺序输入模型。这种方法计算量大且效率低下,因为模型需要重新处理每个块的重叠上下文。
  4. 截断伪影:当输入被截断以适合上下文窗口时,模型可能会生成突然结束或缺乏适当闭合的输出,从而导致不令人满意的用户体验。

解决方案:长上下文窗口的细粒度数据设计

为了应对长上下文窗口带来的挑战,研究人员和从业者探索了各种解决方案。一种有前途的方法是细粒度数据设计,它涉及仔细构造和格式化输入数据,以方便 LLM 高效处理。这种方法旨在最大限度地增加模型上下文窗口内可捕获的相关信息量,同时保持连贯性和上下文理解。

具有长上下文窗口的微调 LLM 的粒度数据设计策略:

  1. 分层分段:将长输入分解为分层结构,其中每个段代表一个逻辑信息单元(例如段落、节或章)。这种方法允许模型以结构化的方式处理输入,在每个段内保留上下文,同时高效处理长篇内容。
  2. 元数据注入:将元数据或辅助信息合并到输入数据中可以为模型提供额外的背景信息和指导。例如,包括章节标题、时间戳或其他相关元数据可以帮助模型更好地理解输入的结构和流程。
  3. 总结和压缩:生成长输入的压缩表示或总结有助于缩小整体上下文窗口,同时保留最突出的信息。这种方法对于问答等任务特别有用,因为模型需要关注输入的特定方面。
  4. 注意力掩蔽和窗口:利用注意力机制和窗口技术有选择地关注输入的相关部分,可以帮助模型优先考虑重要信息,同时忽略不相关或冗余的内容。
  5. 检索增强方法:将 LLM 与检索系统(例如密集段落检索或基于稀疏索引的检索)相结合,可以按需访问大型语料库中的相关信息。这种方法减轻了将整个输入放入上下文窗口的需要,因为模型可以根据需要检索和关注相关段落。
  6. 多阶段处理:将复杂任务分解为多个阶段,每个阶段专注于输入或输出的特定方面。这种方法可以通过将总体任务划分为更小、更易于管理的子任务来帮助管理上下文窗口要求。
  7. 数据增强和预训练:使用模拟长上下文场景的合成示例来增强训练数据,可以帮助模型在微调期间更好地推广到此类情况。此外,在长格式数据上对模型进行预训练可以提高其处理长上下文窗口的能力。

实施注意事项

为具有长上下文窗口的微调 LLM 实施细粒度数据设计需要仔细规划并考虑各种因素,包括:

  1. 任务要求:目标任务的具体要求将决定最合适的数据设计方法。例如,需要保留输入的原始结构和流程的任务(例如创意写作)可能受益于分层分段,而优先提取特定信息的任务(例如问答)可能更适合总结和压缩技术。
  2. 计算资源:某些数据设计方法(例如检索增强方法或多阶段处理)的计算成本可能很高,并且可能需要大量硬件资源。在方法的复杂性和可用的计算资源之间取得平衡至关重要。
  3. 数据预处理和格式化:实施细粒度数据设计通常涉及大量数据预处理和格式化步骤。这可能包括标记化、句子/段落分割、元数据提取以及特定于所选方法的其他预处理任务。
  4. 模型架构和微调:根据数据设计方法,可能需要修改模型架构或微调程序。例如,注意力掩蔽或窗口技术可能需要调整模型的注意力机制,而检索增强方法可能需要集成单独的检索组件。
  5. 评估和基准测试:建立适当的评估指标和基准对于评估细粒度数据设计方法的有效性至关重要。这可能涉及创建专门的数据集或调整现有基准以捕捉模型在长格式输入上的性能。
  6. 迭代细化:实施细粒度数据设计通常是一个迭代过程,需要进行实验、评估和细化。可能需要根据性能反馈和特定领域要求持续监控和调整数据设计方法,以实现最佳结果。

挑战与权衡

虽然细粒度数据设计为处理 LLM 中的长上下文窗口提供了有希望的解决方案,但它也带来了一系列挑战和权衡,需要仔细考虑和解决。以下是需要牢记的一些关键挑战和权衡:

  1. 复杂性增加:实施细粒度数据设计通常涉及额外的复杂性,例如数据预处理、格式化和专门的模型架构或组件。这种复杂性的增加可能会使整个系统的开发、维护和调试更加困难,从而可能增加引入错误或意外行为的风险。
  2. 数据质量和一致性:细粒度数据设计技术在很大程度上依赖于输入数据的质量和一致性。数据预处理、分割或元数据提取中的不一致或错误可能会在整个系统中传播并对模型的性能产生负面影响。确保高质量和一致的数据处理管道变得至关重要。
  3. 计算开销:许多细粒度数据设计方法(例如检索增强方法、多阶段处理或注意力屏蔽/窗口)可能会带来额外的计算开销。这种开销可能表现为内存需求增加、处理时间更长或能耗更高,从而可能限制系统的可扩展性和实时性能。
  4. 失去全局背景:虽然细粒度数据设计旨在保留单个片段或块内的上下文理解,但在处理长输入时,存在丢失全局背景或总体叙述的风险。这对于需要在整个输入中保持连贯性和连续性的任务(例如创意写作或讲故事)尤其具有挑战性。
  5. 平衡粒度和效率:在数据设计中找到最佳粒度级别是一个微妙的平衡。太粗粒度的分割可能无法捕捉重要的细微差别或细节,而太细粒度的分割则会导致效率低下和计算开销增加。确定给定任务和数据集的适当粒度级别可能是一项不小的挑战。
  6. 适应性和泛化性:细粒度数据设计方法通常针对特定任务或领域进行量身定制,可能无法很好地推广到其他环境或应用程序。这可能导致在将这些技术应用于新场景时需要进行大量定制和调整,从而可能增加开发时间和成本。
  7. 评估和可解释性:评估使用细粒度数据设计处理的长格式输入的 LLM 性能可能具有挑战性,因为传统的评估指标可能无法捕捉长输入中的上下文理解和连贯性的细微差别。此外,在处理分段或压缩表示时解释和说明模型的行为可能更加困难,从而阻碍系统的可解释性和可信度。
  8. 道德考量:在某些应用中,例如法律或医学领域,涉及汇总、压缩或选择性注意的细粒度数据设计方法可能会引发道德问题。在这些敏感领域,确保在处理长输入时不会丢失或歪曲关键信息至关重要。

为了应对这些挑战和权衡,应采用一种整体方法,考虑目标任务的具体要求、可用的计算资源以及性能、效率和可解释性之间的权衡。此外,建立实施细粒度数据设计的最佳实践、指南和基准可以帮助标准化和简化开发过程,同时促进不同方法之间的可重复性和公平比较。

最终,决定采用细粒度数据设计来对具有长上下文窗口的 LLM 进行微调应该基于对特定应用环境中的优点和缺点的仔细评估,同时考虑到对模型性能、计算资源和道德考虑的潜在影响。

关键评估指标和基准

  1. 语境连贯性:衡量模型输出相对于输入的更广泛语境的连贯性和一致性的指标。这可以包括连贯性评分、共指解析准确度或人类对连贯性的评估等指标。
  2. 事实一致性:评估模型输出的事实准确性和一致性的指标,特别是对于问答或总结等任务。这可以包括根据基本事实数据进行事实核查或对事实正确性的人工评估。
  3. 内容覆盖率:衡量模型输出在多大程度上涵盖原始长篇输入中的关键信息和细节的指标。这可以包括 ROUGE 分数(针对摘要)、答案跨度覆盖率或人工评估内容覆盖率等指标。
  4. 可读性和流畅性:评估模型生成的输出的可读性和流畅性的指标,特别是对于创意写作或讲故事等任务。这可以包括困惑度分数、可读性的人工评估或自动可读性指数等指标。
  5. 计算效率:衡量不同粒度数据设计方法所需的计算资源的指标,例如内存使用情况、处理时间、能耗以及对更大输入尺寸或模型架构的可扩展性。
  6. 人工评估:虽然定量指标很有价值,但人工评估对于评估连贯性、参与度和整体质量等主观方面仍然至关重要。应采用定义明确的人工评估协议,并制定明确的指导方针和评分标准,以确保一致性和可重复性。

未来方向和结论

用于微调具有长上下文窗口的 LLM 的粒度数据设计是一个活跃的研究和开发领域。随着 LLM 的规模和复杂性不断增长,对长格式输入的有效处理的需求将变得越来越重要。该领域的未来方向可能包括:

  1. Transformer 架构的进步:正在进行的改进基于 Transformer 的架构的研究,例如开发更有效的注意力机制或并行化技术,可以直接有利于处理长上下文窗口。
  2. 混合方法:结合多种数据设计策略,例如分层分割与检索增强技术或多阶段处理,可以为处理长上下文窗口提供更为稳健和有效的解决方案。
  3. 迁移学习和多任务学习:探索迁移学习和多任务学习技术可以使 LLM 更好地概括其处理跨不同任务和领域的长上下文窗口的能力。
  4. 改进的数据预处理和格式化:自然语言处理技术的进步,例如更准确的句子/段落分割、共指解析和元数据提取,可以提高细粒度数据设计方法的有效性。
  5. 专用硬件和加速器:专门为有效处理长上下文窗口而开发的专用硬件和加速器可以显著提高这些方法的计算效率和可扩展性。
  6. 可解释性和可说明性:随着 LLM 在关键决策过程中变得越来越普遍,在处理长上下文窗口时提高其输出的可解释性和可说明性对于建立信任和确保问责至关重要。
  7. 评估和基准测试:建立专门用于评估法学硕士 (LLM) 对长篇输入的表现的标准化评估指标和基准,对于推动该领域的进步和实现不同方法之间的公平比较至关重要。

利用细粒度数据设计对具有长上下文窗口的 LLM 进行微调是一种很有前途的方法,可以充分发挥这些强大的语言模型在各种应用中的潜力。通过精心构建和格式化输入数据,研究人员和从业者可以缓解有限上下文窗口带来的挑战,并使 LLM 能够处理和生成连贯的、上下文感知的输出,即使是长篇内容也是如此。

然而,实施细粒度数据设计并不是一劳永逸的解决方案。它需要对目标任务有深入的理解,仔细考虑计算资源,并愿意尝试不同的技术并根据性能反馈反复改进方法。

随着 LLM 不断发展并处理日益复杂的自然语言任务,精细数据设计的重要性只会越来越大。通过投资该领域的研发,我们可以开拓自然语言处理的新领域,使 LLM 能够真正理解并大规模生成类似人类的语言,无论输入的长度或复杂程度如何。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1897322.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于MCU平台的HMI开发的性能优化与实战(下)

继上篇《基于MCU平台的HMI开发的性能优化与实战(上)》深入探讨了提升MCU平台HMI开发效率和应用性能的策略后,本文将专注于NXP i.MX RT1170 MCU平台的仪表盘开发实践。我们将重点介绍Qt for MCUs的优化技巧,展示如何通过实际案例应…

三、分布式软总线的架构设计

软总线的主要架构如下: 软总线主体功能分为发现、组网、连接和传输四个基本模块,实现: 即插即用:快速便捷发现周边设备。 自由流转:各设备间自组网,任意建立业务连接,实现自由通信。 高效传…

Ubuntu 22.04远程自动登录桌面环境

如果需要远程自动登录桌面环境,首先需要将Ubuntu的自动登录打开,在【settings】-【user】下面 然后要设置【Sharing】进行桌面共享,Ubuntu有自带的桌面共享功能,不需要另外去安装xrdp或者vnc之类的工具了 点开【Remote Desktop】…

Zerotier+Parsec五分钟实现外网远程访问校园或公司内网

0 需求 校园网或公司内网是不能直接通过远程控制桌面软件访问的,想要实现,就必须通过三方的服务来实现穿透内网。但是这样的缺点就是存在延迟。 1 安装软件 (1)Zerotier 是内网穿透软件,在两台设备上都要安装&#…

LabVIEW图像分段线性映射

介绍了如何使用LabVIEW对图像进行分段线性映射处理,通过对特定灰度值区间进行不同的线性映射调整,以优化图像的显示效果。案例中详细展示了如何配置和使用LabVIEW中的图像处理工具,包括设置分段区间、计算映射参数和应用映射函数等步骤。 实…

我独立开发生涯的第一个商业化产品 - 微寻

2024 年 04 月 27 日晚八点,微寻 终于正式上线了。时隔一周,我在五一假期的最后一天写下此文,以纪念这款我独立开发生涯的第一个商业化产品。 1. 何为微寻 微寻 为个人网站提供微信码登录 能力。 没错,微寻 是一个小型 SaaS&am…

【数据结构】07.循环队列

一、循环队列的定义 定义:队列主要有顺序队列,循环队列,双端队列,优先队列。而当中循环队列是一种线性数据结构。它也被称为“环形缓冲器”。它只允许在一端进行插入操作,即队尾(rear)&#xf…

【elasticsearch】IK分词器添加自定义词库,然后更新现有的索引

进入elasticsearch中的plugins位置,找到ik分词器插件,进入ik插件的config文件夹,当中有一个IKAnalyzer.cfg.xml配置文件。使用vim编辑器修改配置文件: vim IKAnalyzer.cfg.xml 配置文件如下(添加了自定义字典的位置&…

springboot交流论坛网站-计算机毕业设计源码00304

摘要 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了交流论坛网站的开发全过程。通过分析交流论坛网站管理的不足,创建了一个计算机管理交流论坛网站的方案。文章介绍了交流论坛网站的系统分析部分&…

名企面试必问30题(十九)——最近行业内你觉得做的最好的案例是哪一个,为什么?

1.思路 考察你对于行业了解,对于新动态是否保持时时关注,以及判断好和不好的能力。 首先,明确指出您认为行业内做得最好的案例。简要介绍该案例所属的公司和产品。阐述该案例在测试方面的突出特点和优势,例如采用了创新的测试方法…

海量设备集中运维,向日葵远程控制赋能农牧产品加工产业链

产业规模越大,单位成本就越低,这是一个广泛存在的商业规律。 在诸多行业中,农牧业的这种“规模效应”尤为明显,这使得在农牧行业内逐渐发展出许多横跨产业链上下游的大型企业集团,业务甚至覆盖相关产业设备的设计与生…

[产品]理解产品

课程安排 认识互联网行业 1.行业对比 2.互联网公司 广义理解: 互联网行业的公司大都以计算机网络技术为基础, 利用网络平台帮助企业提供服务, 并以此获取收入 3.行业细分 典型产品 认识产品经理 1.职责差异 不同类型的公司, 产品经理岗位所负责的工作都是略有差异的 1,外包…

555 定时器芯片工作原理

在本教程中,您将学习如何使用 555 定时器做一些有趣的事情。许多人用它做的第一件事就是制造闪烁的灯光。但这只是用该芯片可以做很多事情的简单示例之一。您还可以控制电机、创建闹钟、创建乐器等等。 让我们先来概览一下这些引脚。 555 定时器引脚排列 引脚 1 接地…

maven项目启动的时候,自动启动netty

1.写一个监听器,重开一个线程初始化,netty,一定要重开一个线程去启动,要不会阻塞的 public class StartupListener implements ServletContextListener {Overridepublic void contextInitialized(ServletContextEvent sce) {// 在Web应用启动时启动WebSocket服务器new Thread(…

从零开始学量化~Ptrade使用教程(三)——行情界面主要功能

技术分析 除复权 提供向前复权、向后复权,系统默认不复权。此外,全面支持月、周、日线复权,支持向前和向后复权、不同时段分段复权等功能。系统能够根据盘中即时行情,个股K线图可以根据该股除权日的送股、配股及红利情况圆滑地画出…

从“钓”到“管”:EasyCVR一体化视频解决方案助力水域安全管理

一、背景 随着城市化进程的加快,越来越多的市民热衷于钓鱼活动。钓鱼活动在带来乐趣的同时,也伴随着一定的安全隐患。尤其是在一些危险水域,也经常出现垂钓者的身影,非法垂钓,这给城市管理带来了不小的阻力。传统的人…

狂赚三个亿,百亿医用耗材上市公司重金押注老人轮椅

布局海外市场,轮椅销量翻两番 作者 | 艾米莉 排版 | 张思琪 抛砖引玉 1.年销售60万台轮椅,英科医疗如何做到? 2.老年人轮椅是出海,还是深耕国内市场? 3.2022年全球轮椅市场规模为48亿美元,谁在喝汤&…

NLTK下载及其报错问题,包解决

目录 问题分析 下载 报错 报错原因 正确ip获取 写入host文件 再次下载 测试是否成功 问题分析 NLTK一般是在作自然语言处理时用到,最开始时,我是直接在conda进行conda install nltk进行安装,以为就可以直接使用,但是运行…

基于docker环境及Harbor部署{很简短一点了,耐心看吧}

用到的环境: docker 、nacos、compose、harbor(自行安装 ,以下连接作为参考) nacos:史上最全整合nacos单机模式整合哈哈哈哈哈_nacos 源码启动 单机模式-CSDN博客 docker、compose、harbor:史上最全的整合Harbor安装教程&#…

Java 并发集合:CopyOnWrite 写时复制集合介绍

大家好,我是栗筝i,这篇文章是我的 “栗筝i 的 Java 技术栈” 专栏的第 016 篇文章,在 “栗筝i 的 Java 技术栈” 这个专栏中我会持续为大家更新 Java 技术相关全套技术栈内容。专栏的主要目标是已经有一定 Java 开发经验,并希望进…