算法思想总结:优先级队列

news2025/1/12 1:49:23

一、最后一块石头的重量

. - 力扣(LeetCode)

        我们每次都要快速找到前两个最大的石头进行抵消,这个时候用优先级队列(建大堆),不断取堆顶元素是最好的!每次删除堆顶元素后,可以自动调整,时间复杂度是logN。

class Solution {
public:
    int lastStoneWeight(vector<int>& stones) 
    {
        //建立优先级队列  大堆
       priority_queue<int> heap;
       for(auto&num:stones) heap.push(num);
       while(heap.size()>1)
       {
        int x=heap.top();
        heap.pop();
        int y=heap.top();
        heap.pop();
        if(x>y) heap.push(x-y); 
       }
       return heap.size()?heap.top():0;//不为空,就返回堆顶元素,为空,就返回0
    }
};

二、数据流中的第K大元素

. - 力扣(LeetCode)

(1)在学习分治专题的时候,我们知道topK问题可以用优先级队列去解决也可以用快速排序的三路划分去解决,并且快速排序反而会更优秀一点,那优先级队列的优势究竟体现在哪里呢??其优势体现在可以不断地去取用堆顶元素或者是加入元素的时候都可以通过用logN的时间复杂度进行调整,而前期建堆也仅仅是N*logN的时间复杂度,而快速排序的三路划分则是一次性的N的时间复杂度,所以长期优先级队列收益高,短期收益快速排序的三路划分收益高。

class KthLargest {
    priority_queue<int,vector<int>,greater<int>> heap;//仿函数
    int k;   //创建一个大小为k的小根堆 堆顶始终是第k大的元素
    //用快速排序算法可以是O(N)的复杂度,但是如果是要频繁去获取,就很显然得依靠优先级队列
public:
    KthLargest(int _k, vector<int>& nums) 
    {
        k=_k; 
       for(auto &val:nums) 
       {
        heap.push(val);
       if(heap.size()>k) heap.pop();//入堆的同时进行向上调整
       }
    }
    int add(int val) 
    {
       heap.push(val);
       if(heap.size()>k)heap.pop();//可能我插入的时候堆里啥也没有
       return heap.top();
    }
};

 三、数据的中位数

. - 力扣(LeetCode)

策略1:存在数组中用sort去排序  —— add(NlogN)  find(1) 

策略2:还是存在数组中,利用插入排序的思想,因为插入之间就已经是有序的了,所以新元素插入时的时间复杂度是插入排序的最好情况O(N)   ——add(N)   find(1)

策略3:优先级队列大小堆维护中位数   add(logN)  find(1)

设计思路:

1、建立left为大根堆,right为小根堆

2、我们的add控制始终保持left的数量要么和right相等,要么比right多一个,为了能够满足在O(1)的复杂度内完成找到中位数的任务,我们希望当left多一个的时候,left堆顶的元素就是中位数,而当left和right相等的时候,中位数就是两个堆的堆顶元素的平均值。

3、为了达到这个目的,我们在时刻控制left和right的数量的同时,一定要保证left里面的元素是小于等于right里面的元素的,所以add要分两种情况去讨论:

情况1:当两个堆的元素个数相等的时候

    (1)如果left为空,或者是add的元素比left的堆顶元素小,那么就让该元素直接进left

    (2)如果add的元素比left的堆顶元素大,那么他也有可能会比right的元素大,所以我们必须要将这个元素丢到right中,但是直接丢就会破坏规则,所以我们要先将add的元素丢到right中进行调整,然后再将right的堆顶元素丢到left中去,保持left和right的数量关系。 (注意,这里的先后顺序很重要,我们不能先将right的堆顶元素丢到left中,然后再将add丢到right中进行调整,因为我们只是知道这个数比left的堆顶元素大,但是他是比right的堆顶元素大还是小我们不得而知,必须要通过他自己的向下调整去选出来)

情况2:当left的元素比right多一个的时候

  (1)如果add的元素比left的堆顶元素大,这个时候无脑进右边就行了。

   (2)如果add的元素比left的堆顶元素小,这个时候我们也得把add的元素丢到left中,然后为了保持数量关系,将调整过后的left的堆顶元素移到right中即可。

细节处理:

1、我们在比较的时候始终实用left的元素进行比较,因为左边不为空的时候右边也可能为空,所以我们如果不用left去比较而是用right去比较,那么还需要多考虑一种边界情况。

2、虽然我们add的都是int类型,但是当两个堆的元素个数相同的时候,我们去取两个堆顶元素取平均值的,而平均值是有可能会出现小数的,所以如果我们还用int的话可能会造成小数点丢失,所以我们在/2的时候变成/2.0,这样结果就会被强转成double;

class MedianFinder {
public:
    MedianFinder() {} //默认初始化不管了
    void addNum(int num) {
       //分类讨论 m==n或者m==n+1
       size_t m=left.size(),n=right.size();
       if(m==n) //m==n->m==n+1
       {
           //如果我比左边的堆顶小,或者是为空,我就进左边
           if(m==0||num<=left.top()) left.push(num);
           else //如果我比堆顶大,那我要进右边,然后把右边的移过来
           {
             right.push(num);
             left.push(right.top());
             right.pop();
           }
       }
       else // m==n+1 ->m==n
       {
          //如果我比左边的小,直接进右边即可
          if(num <= left.top()) 
          {
             left.push(num);
             right.push(left.top());
             left.pop(); 
          }
          else //如果我比左边的大 无脑进右边 
          right.push(num);
       }
    }
    
    double findMedian() 
    { //我们的策略是 m==n 返回堆顶平均值  如果m==n+1 返回左边的堆顶
      if(left.size()>right.size()) return left.top();
      else return (left.top()+right.top())/2.0;
    }
    private:
         priority_queue<int> left;//左边是大根堆
         priority_queue<int,vector<int>,greater<int>> right;///右边是小根堆
};

四、 前K个高频词汇

. - 力扣(LeetCode)

该题是一道非常经典的OJ题,在哈希表章节中介绍了四种解法,运用stl中的不同容器去解决。

算法思想总结:哈希表-CSDN博客

class Solution {
public:
   typedef pair<string,int> PSI;
    struct compare//要注意仿函数要+const修饰,否则可能编译不过
     {
        bool operator()(const PSI&kv1,const PSI&kv2) const
        {
            if(kv1.second==kv2.second) return kv1.first<kv2.first;
            return kv1.second>kv2.second;
        }
     };
    vector<string> topKFrequent(vector<string>& words, int k) 
    {
        unordered_map<string,int> countmap;//计数
        for(auto&s:words) ++countmap[s];
        //丢到优先级队列里
        priority_queue<PSI,vector<PSI>,compare> heap;
        for (auto& it : countmap) {
            heap.push(it);
            if (heap.size() > k) heap.pop();
        }
        vector<string> ret(k);
       for(int i=k-1;i>=0;--i) 
        {
            ret[i]=heap.top().first;
            heap.pop();
        }
       return ret;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1896165.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

前端面试题10(js多位数组变一维数组)

1. 使用concat()和递归 function flatten(arr) {return arr.reduce((acc, val) > Array.isArray(val) ? acc.concat(flatten(val)) : acc.concat(val), []); }let multiDimArray [[1, 2, [3]], 4]; let flatArray flatten(multiDimArray); console.log(flatArray); // 输…

GTest和Catch2单元测试学习(附Cmake测试代码库)

kevin_CTest CTest 单元测试学习 Gitee库&#xff1a; https://gitee.com/bigearrabbit/kevin_ctest.git 示例多是从网页文章上摘取的&#xff0c;大部分记录在下面&#xff0c;或者源码内。供学习参考。 CTest 学习Catch2 框架 单个文档的测试架构&#xff0c;使用方便&am…

【SQL】已解决:SQL错误(15048): 数据兼容级别有效值为100、110或120

文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决SQL错误(15048): 数据兼容级别有效值为100、110或120 在数据库开发和管理过程中&#xff0c;我们经常会遇到各种各样的错误。本文将详细分析SQL错误(15048)的背景、可能原因、…

转型AI产品经理前需要搞懂的9个问题

笔者近10年来一直工作于AI领域技术和产品一线&#xff0c;今天分享9个大家普遍关注却少有人系统回答的问题。 1.下一个10年&#xff0c;AI产业在国内的发展和职业发展的机遇如何&#xff1f; 从四方面看&#xff1a; &#xff08;1&#xff09;技术角度&#xff1a;逐步成熟…

将代码转为Mac窗口风格的图片

前言 在写博客的时候总觉得默认的代码样式不好看&#xff0c;希望用类似Mac窗口那种三个小圆点的风格转成图片贴出来&#xff0c;所以自己动手做了一个。 一、效果展示 二、在线使用 代码图片生成工具&#xff1a;有码高清 三、源码

【Python机器学习】算法链与管道——利用网格搜索选择使用哪个模型

我们可以进一步将GridSearchCV和Pipeline结合起来&#xff1a;还可以搜索管道中正在执行的实际步骤&#xff08;比如用StandardScaler还是用MinMaxScaler&#xff09;。这样会导致更大的搜索空间&#xff0c;应该予以仔细考虑。 尝试所有可能的解决方案&#xff0c;通常并不是…

MySQL—创建查看删除备份恢复数据库

创建数据库 创建数据库 LLF_DB01CREATE DATABASE LLF_DB01删除数据库DROP DATABASE LLF_DB01创建一个使用utf8字符集的数据库并带校对规则的数据库CREATE DATABASE hsp_db03 CHARACTER SET utf8 COLLATE utf8_bin 查看、删除数据库 显示所有的数据库SHOW DATABASES显示数据库…

C++和Python蚂蚁搬食和蚊虫趋光性和浮标机群行为算法神经网络

&#x1f3af;要点 &#x1f3af;机器人群行为配置和C行为实现&#xff1a;&#x1f58a;脚底机器人狭隘空间导航避让障碍物行为 | &#x1f58a;脚底机器人使用摄像头耦合共振&#xff0c;实现同步动作 | &#x1f58a;脚底机器群使用相机&#xff0c;计算彼此间“分子间势能…

opencv实现目标检测功能----20240704

早在 2017 年 8 月,OpenCV 3.3 正式发布,带来了高度改进的“深度神经网络”(dnn)模块。 该模块支持多种深度学习框架,包括 Caffe、TensorFlow 和 Torch/PyTorch。这次我们使用Opencv深度学习的功能实现目标检测的功能,模型选用MobileNetSSD_deploy.caffemodel。 模型加载…

Linux 文件系统以及日志管理

一、inode 与block 1. inode 与block详解 在文件存储硬盘上&#xff0c;硬盘的最小存储单位叫做“扇区”&#xff0c;每个为512字节。 操作系统读取硬盘的时候&#xff0c;不会一个个扇区地读取&#xff0c;这样效率太低&#xff0c;而是一次性连续读取多个扇区,即一次性读取…

传感器标定(一)摄像头内参标定

一、使用ROS进行手动标定安装 1、安装 image-view &usb_cam ⽤于驱动相机 sudo apt-get install ros-melodic-image-view sudo apt-get install ros-melodic-usb-cam2、查看系统视频设备 v4l2- ctl -d /dev/video0 --all 查询所有相机具体的参数包括width和height ls /…

JavaScript原型对象和对象原型、原型继承、原型链

目录 1. 原型对象和对象原型2. 原型继承3. 原型链 1. 原型对象和对象原型 作用: 以前通过构造函数实例化的对象&#xff0c;每个实例化的对象的属性和方法都是独立的&#xff0c;会造成内存浪费。通过prototype对象原型能实现不同实例化对象共享公用的属性和方法&#xff0c;减…

macos下搭建minikube dashboard的启动

背景 最近在复习一下k8s环境相关的知识&#xff0c;需要在自己电脑上搭建一个minikube的环境供自己使用。但是因为docker的镜像仓库最近被墙了&#xff0c;因此在执行minikube dashboard的时候&#xff0c;拉不到相应的镜像&#xff0c;就导致页面看不到相应的一些信息因此本文…

嵌入式上gst rtsp server opencv mat

0 安装gstreamer sudo apt install libgstreamer1.0-0 gstreamer1.0-plugins-base gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav gstreamer1.0-doc gstreamer1.0-tools gstreamer1.0-x gstreamer1.0-alsa gstreamer1.0-…

如何用手机拍出高级感黑白色调照片?华为Pura70系列XMAGE演绎黑白艺术

在影像的世界里&#xff0c;色彩可以让画面更丰富&#xff0c;更具有表现力&#xff0c;往往也能带来更多的视觉冲击。但有时候&#xff0c;黑白却有着一种独特的魅力。华为Pura 70系列XMAGE黑白风格&#xff0c;则给我们了一把通过纯粹艺术大门的钥匙。 XMAGE黑白并非简单的色…

水利行业的智慧化转型实践:结合具体案例,探讨智慧水利在提升水资源利用效率、改善水生态环境方面的实际效果

目录 一、引言 二、智慧水利的定义与意义 三、智慧水利在提升水资源利用效率方面的实践 1. 智慧灌溉系统 2. 智慧供水系统 3. 智慧水务管理平台 四、智慧水利在改善水生态环境方面的实践 1. 智慧水质监测系统 2. 智慧水生态修复系统 3. 智慧防洪减灾系统 五、具体案例…

利用YOLOv8识别自定义模型

一、背景介绍 最近项目需要识别自定义物品&#xff0c;于是学习利用YOLOv8算法&#xff0c;实现物品识别。由于物体类别不再常规模型中&#xff0c;因此需要自己训练相应的模型&#xff0c;特此记录模型训练的过程。 二、训练模型的步骤 1.拍照获取训练图片&#xff08;训练图…

ubuntu软件源的两种格式和环境变量

1. ubuntu的/etc是什么目录&#xff1f; 在Ubuntu操作系统中&#xff0c;/etc/是一个特殊的目录&#xff0c;它包含系统的配置文件。这些配置文件用于设置各种系统和应用程序的参数和选项。 一般来说&#xff0c;用户可以在这个目录下找到各种重要的配置文件&#xff0c;如网络…

Os-hackNos

下载地址 https://download.vulnhub.com/hacknos/Os-hackNos-1.ova 环境配置如果出现&#xff0c;扫描不到IP的情况&#xff0c;可以尝试vulnhub靶机检测不到IP地址解决办法_vulnhub靶机扫描不到ip-CSDN博客 信息收集 确定靶机地址&#xff1a; 探测到存活主机192.168.111.…

背包问题(一)

一.P3985 不开心的金明(01背包变式) 解析: 一开始没有看数据范围,直接当01背包直接写了,结果最后4个测试点RE,一看到数据范围就老实了,1e9的数据,数组直接炸,所以不能直接使用一维的01背包.看了一下题解,部分人是通过极差对数据进行分类,按照300进行分开,使用贪心和dp一起做. …