C++和Python蚂蚁搬食和蚊虫趋光性和浮标机群行为算法神经网络

news2024/11/20 4:27:06

🎯要点

🎯机器人群行为配置和C++行为实现:🖊脚底机器人狭隘空间导航避让障碍物行为 | 🖊脚底机器人使用摄像头耦合共振,实现同步动作 | 🖊脚底机器群使用相机,计算彼此间“分子间势能”的方式寻觅彼此 | 🖊脚底机器拖拽可移动物体,模拟清理行为 | 🖊预先规划机器群活动轨迹,模拟群机导航避障 | 🖊预先规划机器群身份号,模拟群机导航避障 | 🖊模拟蚂蚁搬运食物,预先划定巢穴和外界食物区,使用OpenGL可视化机群搬运过程,机器人使用上述避障和寻觅方式执行动作 | 🖊模拟蚊虫趋光性,使用神经网络和算法创建脚底机器人趋光性动作 | 🖊模拟上级指挥下级动作,下级机群等待上级主机器人命令,收到命令执行各种动作行为。🎯统计学机器人集群量化属性 | 🎯浮标机器人集群

📜机器人用例

📜人形机算法模型:Python人形机踊跃跨栏举重投篮高维数动作算法模型

📜机器人动力学运动学求解:Python | C++ | MATLAB机器人正逆向运动学动力学求解器及算法

📜机器人动力学运动学:Python | C# | MATLAB 库卡机器人微分运动学 | 欧拉-拉格朗日动力学 | 混合动力控制

📜ROS系统机器人:ROS2(Cpp或Python)机器学习路径选择三维模拟平衡车及YOLOv8视觉消息

📜ROS树莓派Raspberry Pi机器人:Cpp(Python)和MATLAB差动驱动ROS Raspberry Pi全功能机器人原型

📜ROS机器人导航算法:Cpp或Python(ROS2)有限状态机-行为树数学模型及虚拟力场本地导航算法避障

📜树莓派Raspberry Pi机器人:Python远程SSH和HTTP视频流级联分类Raspberry Pi 机器人

📜机器人吸尘器:C(C++)和Python实现STM32F4实时操作系统(FreeRTOS)吸尘器

🍪语言内容构成

在这里插入图片描述
在这里插入图片描述

🍇Python粒子群优化算法优化葛根函数

在计算科学中,粒子群优化 是一种计算方法,它通过迭代尝试改进候选解决方案来优化问题,以满足给定的质量标准。它通过拥有一组候选解决方案(这里称为粒子)并根据粒子位置和速度的简单数学公式在搜索空间中移动这些粒子来解决问题。每个粒子的运动都受到其局部最佳已知位置的影响,但也被引导到搜索空间中的最佳已知位置,这些位置会随着其他粒子找到更好的位置而更新。这有望使群体向最佳解决方案移动。

此算法的一个基本变体是通过拥有一个候选解决方案(称为粒子)的种群(称为群体)来工作的。这些粒子根据一些简单的公式在搜索空间中移动。粒子的移动由它们自己在搜索空间中的最佳位置以及整个群体的最佳位置引导。当发现改进的位置时,这些位置将引导群体的移动。这个过程不断重复,希望最终能找到令人满意的解决方案,但不能保证。

形式上,令 f : R n → R f: R ^n \rightarrow R f:RnR 为必须最小化的成本函数。该函数将候选解作为实数向量形式的参数,并产生一个实数作为输出,该实数指示给定候选解的目标函数值。 f f f 的梯度未知。目标是为搜索空间中的所有 b b b 找到一个解决方案 a,其中 f ( a ) ≤ f ( b ) f( a ) \leq f( b ) f(a)f(b),这意味着 a a a 是全局最小值。

S S S 为群体中粒子的数量,每个粒子在搜索空间中都有一个位置 x i ∈ R n x _i \in R ^n xiRn 和一个速度 v i ∈ R n v _i \in R ^n viRn。令 p i p _i pi 为粒子 i i i 的最佳已知位置,并令 g g g​ 为整个群体的最佳已知位置。最小化成本函数的基本粒子群优化算法是:

for 每个粒子 i = 1, ..., S do
    使用均匀分布的随机向量初始化粒子的位置: xi ~ U(blo, bup)
    将粒子的已知位置初始化为其初始位置: pi ← xi
    if f(pi) < f(g) then
        更新群体最知名的位置: g ← pi
    初始化粒子速度: vi ~ U(-|bup-blo|, |bup-blo|)
while 不满足终止条件 do:
    for 每个粒子 i = 1, ..., S do
        for 每个维度 d = 1, ..., n do
            选择随机数: rp, rg ~ U(0,1)
            更新粒子的速度: vi,d ← w vi,d + φp rp (pi,d-xi,d) + φg rg (gd-xi,d)
        更新粒子的位置: xi ← xi + vi
        if f(xi) < f(pi) then
            更新粒子的已知位置: pi ← xi
            if f(pi) < f(g) then
                更新群体最知名的位置: g ← pi

b lo  b _{\text {lo }} blo  b up  b _{\text {up }} bup  分别表示搜索空间的下边界和上边界。 w参数是惯性权重。参数 φ p \varphi_p φp φ g \varphi_g φg通常被称为认知系数和社会系数。终止标准可以是执行的迭代次数,也可以是找到足够目标函数值的解决方案。 参数 w 、 φ p w 、 \varphi_{ p } wφp φ g \varphi_{ g } φg​ 由实践者选择,并控制此算法的行为和效果。

在数学优化中,葛根函数是一个非凸函数,用作优化算法的性能测试问题。它是非线性多峰函数的典型示例。由于搜索空间大且局部最小值数量多,因此寻找此函数的最小值是一个相当困难的问题。

n n n 维域上,它的定义如下:
f ( x ) = A n + ∑ i = 1 n [ x i 2 − A cos ⁡ ( 2 π x i ) ] f( x )=A n+\sum_{i=1}^n\left[x_i^2-A \cos \left(2 \pi x_i\right)\right] f(x)=An+i=1n[xi2Acos(2πxi)]
其中 A = 10 A=10 A=10 x i ∈ [ − 5.12 , 5.12 ] x_i \in[-5.12,5.12] xi[5.12,5.12]。有很多极值:

  • 全局最小值位于 x = 0 x = 0 x=0,其中 f ( x ) = 0 f( x )=0 f(x)=0
  • x i ∈ [ − 5.12 , 5.12 ] x_i \in[-5.12,5.12] xi[5.12,5.12] 的最大函数值位于 x i ∈ [ ± 4.52299366 … , … , ± 4.52299366 … ] x_i \in[ \pm 4.52299366 \ldots, \ldots, \pm 4.52299366 \ldots] xi[±4.52299366,,±4.52299366] 附近

 维数   最大值为  ± 4.52299366 1 40.35329019 2 80.70658039 3 121.0598706 4 161.4131608 5 201.7664509 6 242.1197412 7 282.4730314 8 322.8263216 9 363.1796117 \begin{array}{|l|l|} \hline \text { 维数 } & \text { 最大值为 } \pm 4.52299366 \\ \hline 1 & 40.35329019 \\ \hline 2 & 80.70658039 \\ \hline 3 & 121.0598706 \\ \hline 4 & 161.4131608 \\ \hline 5 & 201.7664509 \\ \hline 6 & 242.1197412 \\ \hline 7 & 282.4730314 \\ \hline 8 & 322.8263216 \\ \hline 9 & 363.1796117 \\ \hline \end{array}  维数 123456789 最大值为 ±4.5229936640.3532901980.70658039121.0598706161.4131608201.7664509242.1197412282.4730314322.8263216363.1796117

下面是使用此算法优化葛根函数的示例,葛根函数是优化中流行的测试函数。葛根函数有许多局部最小值,使其成为一个具有挑战性的优化问题。

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

def rastrigin(x):
    n = len(x)
    return 10*n + sum([xi**2 - 10*np.cos(2*np.pi*xi) for xi in x])

def pso(cost_func, dim=2, num_particles=30, max_iter=100, w=0.5, c1=1, c2=2):
    particles = np.random.uniform(-5.12, 5.12, (num_particles, dim))
    velocities = np.zeros((num_particles, dim))
    best_positions = np.copy(particles)
    best_fitness = np.array([cost_func(p) for p in particles])
    swarm_best_position = best_positions[np.argmin(best_fitness)]
    swarm_best_fitness = np.min(best_fitness)

    for i in range(max_iter):

        r1 = np.random.uniform(0, 1, (num_particles, dim))
        r2 = np.random.uniform(0, 1, (num_particles, dim))
        velocities = w * velocities + c1 * r1 * (best_positions - particles) + c2 * r2 * (swarm_best_position - particles)

        particles += velocities
        fitness_values = np.array([cost_func(p) for p in particles])
        improved_indices = np.where(fitness_values < best_fitness)
        best_positions[improved_indices] = particles[improved_indices]
        best_fitness[improved_indices] = fitness_values[improved_indices]
    return swarm_best_position, swarm_best_fitness

solution, fitness = pso(rastrigin, dim=dim)

print('Solution:', solution)
print('Fitness:', fitness)

x = np.linspace(-5.12, 5.12, 100)
y = np.linspace(-5.12, 5.12, 100)
X, Y = np.meshgrid(x, y)
Z = rastrigin([X, Y])

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, Z, cmap='viridis')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')

ax.scatter(solution[0], solution[1], fitness, color='red')
plt.show()

👉参阅&更新:计算思维 | 亚图跨际

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1896149.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

opencv实现目标检测功能----20240704

早在 2017 年 8 月,OpenCV 3.3 正式发布,带来了高度改进的“深度神经网络”(dnn)模块。 该模块支持多种深度学习框架,包括 Caffe、TensorFlow 和 Torch/PyTorch。这次我们使用Opencv深度学习的功能实现目标检测的功能,模型选用MobileNetSSD_deploy.caffemodel。 模型加载…

Linux 文件系统以及日志管理

一、inode 与block 1. inode 与block详解 在文件存储硬盘上&#xff0c;硬盘的最小存储单位叫做“扇区”&#xff0c;每个为512字节。 操作系统读取硬盘的时候&#xff0c;不会一个个扇区地读取&#xff0c;这样效率太低&#xff0c;而是一次性连续读取多个扇区,即一次性读取…

传感器标定(一)摄像头内参标定

一、使用ROS进行手动标定安装 1、安装 image-view &usb_cam ⽤于驱动相机 sudo apt-get install ros-melodic-image-view sudo apt-get install ros-melodic-usb-cam2、查看系统视频设备 v4l2- ctl -d /dev/video0 --all 查询所有相机具体的参数包括width和height ls /…

JavaScript原型对象和对象原型、原型继承、原型链

目录 1. 原型对象和对象原型2. 原型继承3. 原型链 1. 原型对象和对象原型 作用: 以前通过构造函数实例化的对象&#xff0c;每个实例化的对象的属性和方法都是独立的&#xff0c;会造成内存浪费。通过prototype对象原型能实现不同实例化对象共享公用的属性和方法&#xff0c;减…

macos下搭建minikube dashboard的启动

背景 最近在复习一下k8s环境相关的知识&#xff0c;需要在自己电脑上搭建一个minikube的环境供自己使用。但是因为docker的镜像仓库最近被墙了&#xff0c;因此在执行minikube dashboard的时候&#xff0c;拉不到相应的镜像&#xff0c;就导致页面看不到相应的一些信息因此本文…

嵌入式上gst rtsp server opencv mat

0 安装gstreamer sudo apt install libgstreamer1.0-0 gstreamer1.0-plugins-base gstreamer1.0-plugins-good gstreamer1.0-plugins-bad gstreamer1.0-plugins-ugly gstreamer1.0-libav gstreamer1.0-doc gstreamer1.0-tools gstreamer1.0-x gstreamer1.0-alsa gstreamer1.0-…

如何用手机拍出高级感黑白色调照片?华为Pura70系列XMAGE演绎黑白艺术

在影像的世界里&#xff0c;色彩可以让画面更丰富&#xff0c;更具有表现力&#xff0c;往往也能带来更多的视觉冲击。但有时候&#xff0c;黑白却有着一种独特的魅力。华为Pura 70系列XMAGE黑白风格&#xff0c;则给我们了一把通过纯粹艺术大门的钥匙。 XMAGE黑白并非简单的色…

水利行业的智慧化转型实践:结合具体案例,探讨智慧水利在提升水资源利用效率、改善水生态环境方面的实际效果

目录 一、引言 二、智慧水利的定义与意义 三、智慧水利在提升水资源利用效率方面的实践 1. 智慧灌溉系统 2. 智慧供水系统 3. 智慧水务管理平台 四、智慧水利在改善水生态环境方面的实践 1. 智慧水质监测系统 2. 智慧水生态修复系统 3. 智慧防洪减灾系统 五、具体案例…

利用YOLOv8识别自定义模型

一、背景介绍 最近项目需要识别自定义物品&#xff0c;于是学习利用YOLOv8算法&#xff0c;实现物品识别。由于物体类别不再常规模型中&#xff0c;因此需要自己训练相应的模型&#xff0c;特此记录模型训练的过程。 二、训练模型的步骤 1.拍照获取训练图片&#xff08;训练图…

ubuntu软件源的两种格式和环境变量

1. ubuntu的/etc是什么目录&#xff1f; 在Ubuntu操作系统中&#xff0c;/etc/是一个特殊的目录&#xff0c;它包含系统的配置文件。这些配置文件用于设置各种系统和应用程序的参数和选项。 一般来说&#xff0c;用户可以在这个目录下找到各种重要的配置文件&#xff0c;如网络…

Os-hackNos

下载地址 https://download.vulnhub.com/hacknos/Os-hackNos-1.ova 环境配置如果出现&#xff0c;扫描不到IP的情况&#xff0c;可以尝试vulnhub靶机检测不到IP地址解决办法_vulnhub靶机扫描不到ip-CSDN博客 信息收集 确定靶机地址&#xff1a; 探测到存活主机192.168.111.…

背包问题(一)

一.P3985 不开心的金明(01背包变式) 解析: 一开始没有看数据范围,直接当01背包直接写了,结果最后4个测试点RE,一看到数据范围就老实了,1e9的数据,数组直接炸,所以不能直接使用一维的01背包.看了一下题解,部分人是通过极差对数据进行分类,按照300进行分开,使用贪心和dp一起做. …

JavaScript 原型链那些事

在讲原型之前我们先来了解一下函数。 在JS中&#xff0c;函数的本质就是对象&#xff0c;它与其他对象不同的是&#xff0c;创建它的构造函数与创建其他对象的构造函数不一样。那产生函数对象的构造函数是什么呢&#xff1f;是一个叫做Function的特殊函数&#xff0c;通过newFu…

HarmonyOS - 通过.p7b文件获取fingerprint

1、查询工程所对应的 .p7b 文件 通常新工程运行按照需要通过 DevEco Studio 的 Project Structure 勾选 Automatically generate signature 自动生成签名文件&#xff0c;自动生成的 .p7b 文件通常默认在系统用户目录下. 如&#xff1a;C:/Users/zhangsan/.ohos/config/default…

vue3中svg图标的封装与使用

组件封装&#xff1a; <template><svg :class"svgClass" :style"{ width: size px, height: size px, color: color, verticalAlign:deviationem}" aria-hidden"true"><use :xlink:href"#icon-${name}" /></s…

LT86101UXE 国产原装 HDMI2.0 / DVI中继器方案 分辨率 4Kx2K 用于多显示器 DVI/HDMI电缆扩展模块

1. 描述 Lontium LT86101UXE HDMI2.0 / DVI中继器特性高速中继器符合HDMI2.0/1.4规范,最大6 gbps高速数据率、自适应均衡RX输入和pre-emphasized TX输出支持长电缆应用程序,没有晶体在船上保存BOM成本,内部灵活的PCB TX巷交换路由。 LT86101UXE HDMI2.0/DVI中继器自动检测线缆损…

C语言_指针初阶(进阶还在更新中)

指针是什么 指针是内存中一个最小单元的编号&#xff0c;也就是地址平时口语中说的指针&#xff0c;通常指的是指针变量&#xff0c;是用来存放内存地址的变量指针就是地址&#xff0c;口语中说的指针通常指的是指针变量。我们可以通过&&#xff08;取地址操作符&#xff…

EasyBoss ERP移动端上线数据分析模块,随时查Shopee/TikTok本土店数据

前段时间&#xff0c;EasyBoss ERP出了个超酷炫的数字大屏功能&#xff0c;广受好评。 但是也有老板说&#xff0c;电脑端看数据不够方便啊&#xff0c;你们EasyBoss有本事上个手机就能看数据的功能啊&#xff01; 说干就干&#xff0c;直接满足你们的需求&#xff01; 于是在…

推荐一款Win11主题WPF UI框架

最近在微软商店&#xff0c;官方上架了新款Win11风格的WPF版UI框架【WPF Gallery Preview 1.0.0.0】,这款应用引入了前沿的Fluent Design UI设计&#xff0c;为用户带来全新的视觉体验。 WPF Gallery简介 做为一关注前沿资讯的开发人员&#xff0c;首先关注的是应用WPF Gallery…

Centos7 安装老版本的chrome

查看自己linux是哪个centos版本 使用以下命令&#xff1a; cat /etc/centos-release我这里是centOS 7。然后在安装最新版的google-chrome时&#xff0c;总是会报错显示存在依赖环境的问题&#xff0c;使得无法安装成功chrome。 Package: google-chrome-stable (/google-chro…