6 矩阵相关案例

news2025/1/16 14:39:42

矩阵计算在CUDA中的应用是并行计算领域的典型场景 ;

矩阵算法题通常涉及线性代数的基础知识,以及对数据结构和算法的深入理解。解决这类问题时,掌握一些核心思想和技巧会非常有帮助。以下是一些常见的矩阵算法题解题思想:

  1. 动态规划:矩阵链乘法问题是一个典型的例子,它要求找出最优的括号化方式来最小化乘法次数。动态规划通过构建一个表来存储子问题的解,从而避免重复计算,达到高效求解的目的。

  2. 分治策略:在处理大规模矩阵运算时,如大矩阵乘法,可以考虑分治法,即将大矩阵分割成小矩阵,先计算小矩阵的乘积,再合并结果。Strassen算法就是一个经典的分治算法,它将矩阵分为四个子矩阵,通过7次较小矩阵的乘法来计算原矩阵的乘积,而非传统的8次。

  3. 空间换时间:预计算和缓存技术可以用来加速某些类型的矩阵操作,例如计算矩阵的幂。通过预先计算并存储中间结果,后续计算可以复用这些结果,减少重复计算,尽管这可能会增加内存消耗。

  4. 位运算:在处理特殊类型的矩阵(如稀疏矩阵或二进制矩阵)时,位运算可以极大地提高效率。例如,利用位运算进行集合运算(交、并、差)可以比传统循环更快。

  5. 迭代与递归:在解决某些矩阵问题时,如计算矩阵的特征值、行列式或幂,迭代法和递归法可以提供不同的解决方案。迭代通常用于连续逼近问题,而递归则常用于分解问题为更小规模的相似问题。

  6. 利用矩阵特性:理解和利用矩阵的性质(如对称性、正定性、稀疏性)可以简化算法设计。例如,对称矩阵的乘法可以优化存储和计算,稀疏矩阵则可以通过压缩存储格式来节省空间和计算资源。

  7. 线性代数变换:诸如LU分解、QR分解、奇异值分解(SVD)等线性代数中的矩阵分解技术,可以将复杂问题转化为更易于处理的形式。这些方法在解决逆矩阵、最小二乘问题、特征值问题等方面非常有效。

73. 矩阵置零

给定一个 m x n 的矩阵,如果一个元素为 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法

思想:

既然要对矩阵中为零的元素的同行、同列都要置为0;

简单的:记住元素0 的行以及列;

在Python中,列表(list)的拷贝可以通过两种主要方式实现:浅拷贝(shallow copy)和深拷贝(deep copy)。这两种拷贝方式的主要区别在于它们处理列表中嵌套对象(如子列表或其他可变对象)的方式。

浅拷贝:里面有复杂结构的不会被拷贝;

浅拷贝创建了一个新列表,但这个新列表中的元素仍然是原列表中元素的引用。这意味着,如果原列表中含有其他可变对象(如子列表),新列表中的对应元素会指向相同的子列表对象。因此,修改新列表中的子列表会影响到原列表中的相应子列表。

浅拷贝可以通过以下方法实现:

  • 使用列表的 copy() 方法:new_list = original_list.copy()
  • 使用切片操作:new_list = original_list[:]

深拷贝:里面有复杂结构的也会被拷贝;

深拷贝则不仅创建列表的新副本,还会递归地拷贝列表中所有层级的元素,为所有嵌套的对象创建新的独立副本。因此,修改深拷贝得到的新列表中的任何元素,都不会影响到原列表或其嵌套对象。

深拷贝可以通过以下方法实现:

  • 使用 copy 模块的 deepcopy() 函数:import copy; new_list = copy.deepcopy(original_list)
import copy
class Solution:
    def setZeroes(self, matrix: List[List[int]]) -> None:
        """
        Do not return anything, modify matrix in-place instead.
        """
        rows = []
        cols = []
        for i in range(len(matrix)):
            for j in range(len(matrix[0])):
                if matrix[i][j] == 0:
                    rows.append(i) 
                    cols.append(j)
        
        for row,col in zip(rows,cols):
            matrix[row] = [0] * len(matrix[0])
            for z in range(len(matrix)):
                matrix[z][col] = 0

        

54. 螺旋矩阵

这个题目我遇到很多次了,真的是让我又爱又恨呢,孽缘啊!值的多看看几遍的题目;

给你一个 m 行 n 列的矩阵 matrix ,请按照 顺时针螺旋顺序 ,返回矩阵中的所有元素。

思想:

到底怎么走的呢:

根据题目示例 matrix = [[1,2,3],[4,5,6],[7,8,9]] 的对应输出 [1,2,3,6,9,8,7,4,5] 可以发现,顺时针打印矩阵的顺序是 “从左向右、从上向下、从右向左、从下向上” 循环。

因此,考虑设定矩阵的 “左、上、右、下” 四个边界,模拟以上矩阵遍历顺序。

算法流程:
1 空值处理: 当 matrix 为空时,直接返回空列表 [] 即可。
2 初始化: 矩阵 左、右、上、下 四个边界 l , r , t , b ,用于打印的结果列表 res 。
3 循环打印: “从左向右、从上向下、从右向左、从下向上” 四个方向循环打印。

  1. 根据边界打印,即将元素按顺序添加至列表 res 尾部。
  2. 边界向内收缩 1 (代表已被打印)。
  3. 判断边界是否相遇(是否打印完毕),若打印完毕则跳出。

4 返回值: 返回 res 即可。

class Solution:
    def spiralOrder(self, matrix: List[List[int]]) -> List[int]:
        if not matrix:return []
        l,r,t,b,res = 0,len(matrix[0])-1,0,len(matrix)-1,[]

        while True:
            for i in range(l,r+1): res.append(matrix[t][i])
            t+=1
            if t>b:break

            for i in range(t,b+1): res.append(matrix[i][r])
            r-=1
            if l>r:break

            for i in range(r,l-1,-1): res.append(matrix[b][i])
            b-=1
            if t>b:break

            for i in range(b,t-1,-1): res.append(matrix[i][l])
            l+=1
            if l>r:break
        return res

48. 旋转图像

MD! 这个题目,让我想到了在做计算机视觉时图像赠强!

给定一个 × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。

你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。

先转置,然后把每一列翻转;

这个想法,我最想到的就是把矩阵转置了;然后看了一下,知道了答案是什么!

 zip(*matrix) = 矩阵的列转置;

        在Python中,zip(*matrix) 是一种常用的操作,尤其在处理多维数组(如矩阵)时。这里的 matrix 假定是一个二维列表(即列表的列表),用于表示一个矩阵。星号(*)在函数调用中的作用是 unpacking(解包),它将矩阵的每一行作为单独的参数传递给 zip 函数。

    zip 函数的基本功能是将多个可迭代对象(在这个上下文中是矩阵的行)对应位置的元素配对,形成一个元组的迭代器。当应用于二维列表(矩阵)时,zip(*matrix) 的效果是将矩阵的列转置。也就是说,它会把矩阵的每一列元素收集起来,形成新的元组,这些元组组成的迭代器实质上代表了原矩阵的转置。

class Solution:
    def rotate(self, matrix: List[List[int]]) -> None:
        """
        Do not return anything, modify matrix in-place instead.
        """
        for i in range(len(matrix)):
            for j in range(i, len(matrix[0])):
                matrix[i][j], matrix[j][i] = matrix[j][i], matrix[i][j]

        for i in range(len(matrix)):
            matrix[i] = matrix[i][::-1]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1895279.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

解析MySQL核心技术:视图的实用指南与实践案例

在数据库管理中,MySQL视图(View)是一种强大的功能,利用它可以简化复杂查询、提高数据安全性以及增强代码的可维护性。本篇文章将详细介绍MySQL视图的相关知识,包括视图的创建、修改、删除、使用场景以及常见的最佳实践…

Build a Large Language Model (From Scratch)附录D(gpt-4o翻译版)

来源:https://github.com/rasbt/LLMs-from-scratch?tabreadme-ov-file https://www.manning.com/books/build-a-large-language-model-from-scratch

五.核心动画 - 图层的变换(平移,缩放,旋转,3D变化)

引言 在上一篇博客中,我们研究了一些视觉效果,在本篇博客中我们将要来讨论一下图层的旋转,平移,缩放,以及可以将扁平物体转换成三维空间对象的CATransform3D。 图层变换 图层的仿射变换 在视图中有一个transform属…

[ C++ ] 深入理解模板( 进 阶 )

目录 非类型模板参数 类模板没有实例化的情况 模板的特化 注意函数特化中遇到的问题 建议:(直接使用函数重载) 类模板特化 全特化 偏特化 偏特化有以下两种表现方式: 部分特化(将模板参数类表中的一部分参数特化…

路由的高级用法

多级路由 1.新建一个Mian组件 <template><div> <h1>我是Msg的子组件</h1></div> </template><script> export default {name: "Mian", } </script><style> </style> 2.在router中msg小新建一个路由 imp…

利用运放设计简单有源滤波器(低通、高通、带通)

本文旨在帮助刚接触模电的同学快速设计一个实用可靠的有源滤波器&#xff0c;故我将不会说一些晦涩难懂的原理&#xff0c;只给出仿真电路图。 低通滤波器 图1 低通滤波器 图1所示的是一个截止频率约为1KHz的低通滤波器。 图2 200Hz的情况 图3 2KHz的情况 设计步骤为&#x…

【京存】AI人工智能时代的分布式存储

如今&#xff0c;AI人工智能的浪潮席卷全球&#xff0c;数据以前所未有的速度增长与积累。如何高效存储、管理和利用海量数据&#xff0c;成为推动AI发展的关键。 今日&#xff0c;我们将为您深度剖析AI人工智能分布式存储方案&#xff0c;伴随AI技术在图像识别、自然语言处理…

收购北京1000万投资集团公司要求和收购费用

收购北京投资集团公司执照多少钱&#xff0c;投资集团公司注册代理投资、金融类公司已经全国停止注册&#xff0c;目前唯一还可以注册的就是金武汉南京投资公司&#xff0c;但是政策也是越来越紧、限制越来越多有的地区已经不让核名了&#xff0c;说不好哪天也就停止注册了&…

60种AI工具用法 学会探索AI的无限可能

外面还在卖的课程&#xff0c;学会探索AI的无限可能&#xff0c;从构建精准的提示词到获取个性化新闻&#xff0c;从快速制作PPT到短视频内容的智能提炼&#xff0c;再到编程、股市分析和视频剪辑&#xff0c;AI工具助您工作学习效率飞跃提升&#xff01; 百度网盘 请输入提取…

MATLAB和Python发那科ABB库卡史陶比尔工业机器人模拟示教框架

&#x1f3af;要点 &#x1f3af;模拟工业机器人 | &#x1f3af;可视化机器人DH 参数&#xff0c;机器人三维视图 | &#x1f3af;绘制观察运动时关节坐标位置、速度和加速度 | &#x1f3af;绘制每个关节处的扭矩和力 | &#x1f3af;图形界面示教机器人 | &#x1f3af;工业…

深入编译与体验开源车载Linux操作系统AGL

随着汽车行业的智能化和互联化趋势日益明显&#xff0c;车载系统作为汽车的重要组成部分&#xff0c;其性能和功能也受到了越来越多的关注。Linux作为一款开源的操作系统&#xff0c;具有稳定性高、安全性强、可定制性好等优点&#xff0c;因此成为了车载系统领域的热门选择。 …

内容为王:揭秘顶尖品牌的内容营销制胜法宝

内容营销是当今互联网市场推广领域的热门话题&#xff0c;因为它可以帮助企业更好地与受众沟通、建立品牌口碑&#xff0c;增加销售量。 根据咱们何策网的资源库里的SocialBeta2024年最新《2024 内容营销 10 大趋势》的报告来看&#xff0c;品牌在未来内容营销中最应该注重的是…

2023-2024华为ICT大赛中国区 实践赛昇腾AI赛道 全国总决赛 理论部分真题

Part1 MindSpore模块(7题)&#xff1a; 1、MindSpore深度学习框架的候选运行时支持多种硬件平台&#xff0c;包括CPU、GPU、NPU等。以下关于MindSpore后端的描述中&#xff0c;正确的有哪些项?(多选题) A.MindSpore后端运行时负责将计算图转换为对应硬件平台的执行指令&…

SD NAND时序解析

一、SD NAND时序的重要性 在SD NAND的数据传输过程中&#xff0c;时序起着至关重要的作用。正确的时序确保了数据能够准确无误地在主机和SD NAND之间传输。 二、命令与读写时序 SD NAND的通信基于命令和数据传输&#xff0c;遵循以下时序规则&#xff1a; 命令与响应交互&…

KVB交易平台 :市场迎来新热潮!铜价会持续上涨吗?

近期&#xff0c;全球铜价出现明显上涨趋势。韩国光阳LME仓库的铜库存显著下降&#xff0c;市场对即时需求的增加作出了积极反应。供应端的紧张和需求端的复苏共同推动了铜价的上涨。 KVB外汇 分析师们对未来铜价保持谨慎乐观态度&#xff0c;认为长期内铜价有望保持稳定甚至进…

c++纵横字谜

1.实现一个纵横字谜 2.支持14x14的网格 3.可以查看答案 4.猜测错误会提示答案信息 5.从txt读取词汇 6.每次游戏开始 随机生成纵横字谜 n’h

Appium自动化测试框架3

滑动与拖拽 swipe 滑动时间的长短会影响最后的结果的 是有一定误差的 from appium import webdriver import time # 启动一个字典 包装相应的启动参数 desired_caps dict() # 平台的名字&#xff0c;安卓还是IOS 大小写无所谓 desired_caps[platformName] Android # 平台的…

gin项目部署到服务器并后台启动

文章目录 一、安装go语言环境的方式1.下载go安装包&#xff0c;解压&#xff0c;配置环境变量2.压缩项目上传到服务器并解压3.来到项目的根目录3.开放端口&#xff0c;运行项目 二、打包的方式1.在项目的根目录下输入以下命令2.把打包好的文件上传到服务器3.部署网站4.ssl证书 …

UserWarning: IPython History requires SQLite, your history will not be saved

UserWarning: IPython History requires SQLite, your history will not be saved 很久未打开pycharm&#xff0c;控制台出现爆红 解决方法&#xff1a; 重启pycharm&#xff0c;就好啦&#xff01;&#xff01;&#xff01;我猜测可能是上次pycharm没有关闭就电脑关机&…

2024亚洲国际餐饮展览会(北京餐饮展|火锅展|预制菜展会)

2024北京餐饮展会&#xff0c;2024北京食材展会&#xff0c;2024北京火锅展会&#xff0c;2024北京火锅食材展会&#xff0c;2024北京预制菜展会&#xff0c;2024北京预制食材展会&#xff0c; 2024亚洲国际餐饮展览会&#xff08;北京餐饮展|火锅展|预制菜展会&#xff09; …