SQL执行慢排查以及优化思路

news2025/1/17 9:04:15

数据库服务器的优化步骤

当我们遇到数据库调优问题的时候,该如何思考呢?我把思考的流程整理成了下面这张图。

整个流程划分成了观察(Show status)和行动(Action)两个部分。字母 S 的部分代表观察(会使用相应的分析工具),字母 A 代表的部分是行动(对应分析可以采取的行动)。

在这里插入图片描述
我们可以通过观察了解数据库整体的运行状态,通过性能分析工具可以让我们了解执行慢的 SQL 都有哪些,查看具体的 SQL 执行计划,甚至是 SQL 执行中的每一步的成本代价,这样才能定位问题所在,找到了问题,再采取相应的行动。

我来详细解释一下这张图。

首先在 S1 部分,我们需要观察服务器的状态是否存在周期性的波动。如果存在周期性波动,有可能是周期性节点的原因,比如双十一、促销活动等。这样的话,我们可以通过 A1 这一步骤解决,也就是加缓存,或者更改缓存失效策略。

如果缓存策略没有解决,或者不是周期性波动的原因,我们就需要进一步分析查询延迟和卡顿的原因。接下来进入 S2 这一步,我们需要开启慢查询。慢查询可以帮我们定位执行慢的 SQL 语句。我们可以通过设置 long_query_time 参数定义“慢”的阈值,如果 SQL 执行时间超过了 long_query_time,则会认为是慢查询。当收集上来这些慢查询之后,我们就可以通过分析工具对慢查询日志进行分析。

在 S3 这一步骤中,我们就知道了执行慢的 SQL,这样就可以针对性地用 EXPLAIN 查看对应 SQL 语句的执行计划,或者使用 show profile 查看 SQL 中每一个步骤的时间成本。这样我们就可以了解 SQL 查询慢是因为执行时间长,还是等待时间长。

如果是 SQL 等待时间长,我们进入 A2 步骤。在这一步骤中,我们可以调优服务器的参数,比如适当增加数据库缓冲池等。如果是 SQL 执行时间长,就进入 A3 步骤,这一步中我们需要考虑是索引设计的问题?还是查询关联的数据表过多?还是因为数据表的字段设计问题导致了这一现象。然后在这些维度上进行对应的调整。

如果 A2 和 A3 都不能解决问题,我们需要考虑数据库自身的 SQL 查询性能是否已经达到了瓶颈,如果确认没有达到性能瓶颈,就需要重新检查,重复以上的步骤。如果已经达到了性能瓶颈,进入 A4 阶段,需要考虑增加服务器,采用读写分离的架构,或者考虑对数据库进行分库分表,比如垂直分库、垂直分表和水平分表等。

以上就是数据库调优的流程思路。如果我们发现执行 SQL 时存在不规则延迟或卡顿的时候,就可以采用分析工具帮我们定位有问题的 SQL,这三种分析工具你可以理解是 SQL 调优的三个步骤:慢查询、EXPLAIN 和 SHOW PROFILING。

使用慢查询定位执行慢的 SQL

好慢询可以帮我们找到执行慢的 SQL,在使用前,我们需要先看下慢查询是否已经开启,使用下面这条命令即可:

mysql > show variables like '%slow_query_log';

在这里插入图片描述
我们能看到 slow_query_log=OFF,也就是说慢查询日志此时是关上的。我们可以把慢查询日志打开,注意设置变量值的时候需要使用 global,否则会报错:

mysql > set global slow_query_log='ON';

然后我们再来查看下慢查询日志是否开启,以及慢查询日志文件的位置:

在这里插入图片描述
你能看到这时慢查询分析已经开启,同时文件保存在 DESKTOP-4BK02RP-slow 文件中。

接下来我们来看下慢查询的时间阈值设置,使用如下命令:

mysql > show variables like '%long_query_time%';

这里如果我们想把时间缩短,比如设置为 3 秒,可以这样设置:

mysql > set global long_query_time = 3;

在这里插入图片描述
我们可以使用 MySQL 自带的 mysqldumpslow 工具统计慢查询日志(这个工具是个 Perl 脚本,你需要先安装好 Perl)。

mysqldumpslow 命令的具体参数如下:

  • -s:采用 order 排序的方式,排序方式可以有以下几种。分别是 c(访问次数)、t(查询时间)、l(锁定时间)、r(返回记录)、ac(平均查询次数)、al(平均锁定时间)、ar(平均返回记录数)和 at(平均查询时间)。其中 at 为默认排序方式。
  • -t:返回前 N 条数据 。
  • -g:后面可以是正则表达式,对大小写不敏感。

比如我们想要按照查询时间排序,查看前两条 SQL 语句,这样写即可:

perl mysqldumpslow.pl -s t -t 2 "C:\ProgramData\MySQL\MySQL Server 8.0\Data\DESKTOP-4BK02RP-slow.log"

在这里插入图片描述
你能看到开启了慢查询日志,并设置了相应的慢查询时间阈值之后,只要大于这个阈值的 SQL 语句都会保存在慢查询日志中,然后我们就可以通过 mysqldumpslow 工具提取想要查找的 SQL 语句了。

如何使用 EXPLAIN 查看执行计划

定位了查询慢的 SQL 之后,我们就可以使用 EXPLAIN 工具做针对性的分析,比如我们想要了解 product_comment 和 user 表进行联查的时候所采用的的执行计划,可以使用下面这条语句:

EXPLAIN SELECT comment_id, product_id, comment_text, product_comment.user_id, user_name FROM product_comment JOIN user on product_comment.user_id = user.user_id 

在这里插入图片描述
EXPLAIN 可以帮助我们了解数据表的读取顺序、SELECT 子句的类型、数据表的访问类型、可使用的索引、实际使用的索引、使用的索引长度、上一个表的连接匹配条件、被优化器查询的行的数量以及额外的信息(比如是否使用了外部排序,是否使用了临时表等)等。

SQL 执行的顺序是根据 id 从大到小执行的,也就是 id 越大越先执行,当 id 相同时,从上到下执行。

数据表的访问类型所对应的 type 列是我们比较关注的信息。type 可能有以下几种情况:

在这里插入图片描述
在这些情况里,all 是最坏的情况,因为采用了全表扫描的方式。index 和 all 差不多,只不过 index 对索引表进行全扫描,这样做的好处是不再需要对数据进行排序,但是开销依然很大。如果我们在 extra 列中看到 Using index,说明采用了索引覆盖,也就是索引可以覆盖所需的 SELECT 字段,就不需要进行回表,这样就减少了数据查找的开销。

比如我们对 product_comment 数据表进行查询,设计了联合索引 composite_index (user_id, comment_text),然后对数据表中的 comment_id、comment_text、user_id 这三个字段进行查询,最后用 EXPLAIN 看下执行计划:

EXPLAIN SELECT comment_id, comment_text, user_id FROM product_comment 

在这里插入图片描述

你能看到这里的访问方式采用了 index 的方式,key 列采用了联合索引,进行扫描。Extral 列为 Using index,告诉我们索引可以覆盖 SELECT 中的字段,也就不需要回表查询了。

range 表示采用了索引范围扫描,这里不进行举例,从这一级别开始,索引的作用会越来越明显,因此我们需要尽量让 SQL 查询可以使用到 range 这一级别及以上的 type 访问方式。

index_merge 说明查询同时使用了两个或以上的索引,最后取了交集或者并集。比如想要对 comment_id=500000 或者 user_id=500000 的数据进行查询,数据表中 comment_id 为主键,user_id 是普通索引,我们可以查看下执行计划:

EXPLAIN SELECT comment_id, product_id, comment_text, user_id FROM product_comment WHERE comment_id = 500000 OR user_id = 500000

在这里插入图片描述
你能看到这里同时使用到了两个索引,分别是主键和 user_id,采用的数据表访问类型是 index_merge,通过 union 的方式对两个索引检索的数据进行合并。

ref 类型表示采用了非唯一索引,或者是唯一索引的非唯一性前缀。比如我们想要对 user_id=500000 的评论进行查询,使用 EXPLAIN 查看执行计划:

EXPLAIN SELECT comment_id, comment_text, user_id FROM product_comment WHERE user_id = 500000 

在这里插入图片描述
这里 user_id 为普通索引(因为 user_id 在商品评论表中可能是重复的),因此采用的访问类型是 ref,同时在 ref 列中显示 const,表示连接匹配条件是常量,用于索引列的查找。

eq_ref 类型是使用主键或唯一索引时产生的访问方式,通常使用在多表联查中。假设我们对 product_comment 表和 usre 表进行联查,关联条件是两张表的 user_id 相等,使用 EXPLAIN 进行执行计划查看:

EXPLAIN SELECT * FROM product_comment JOIN user WHERE product_comment.user_id = user.user_id 

在这里插入图片描述
const 类型表示我们使用了主键或者唯一索引(所有的部分)与常量值进行比较,比如我们想要查看 comment_id=500000,查看执行计划:

EXPLAIN SELECT comment_id, comment_text, user_id FROM product_comment WHERE comment_id = 500000 

在这里插入图片描述
需要说明的是 const 类型和 eq_ref 都使用了主键或唯一索引,不过这两个类型有所区别,const 是与常量进行比较,查询效率会更快,而 eq_ref 通常用于多表联查中。

system 类型一般用于 MyISAM 或 Memory 表,属于 const 类型的特例,当表只有一行时连接类型为 system

EXPLAIN SELECT * FROM test_myisam

在这里插入图片描述
你能看到除了 all 类型外,其他类型都可以使用到索引,但是不同的连接方式的效率也会有所不同,效率从低到高依次为 all < index < range < index_merge < ref < eq_ref < const/system。我们在查看执行计划的时候,通常希望执行计划至少可以使用到 range 级别以上的连接方式,如果只使用到了 all 或者 index 连接方式,我们可以从 SQL 语句和索引设计的角度上进行改进。

使用 SHOW PROFILE 查看 SQL 的具体执行成本

SHOW PROFILE 相比 EXPLAIN 能看到更进一步的执行解析,包括 SQL 都做了什么、所花费的时间等。默认情况下,profiling 是关闭的,我们可以在会话级别开启这个功能。

mysql > show variables like 'profiling';

在这里插入图片描述
通过设置 profiling='ON’来开启 show profile:

mysql > set profiling = 'ON';

在这里插入图片描述
我们可以看下当前会话都有哪些 profiles,使用下面这条命令:

mysql > show profiles;

在这里插入图片描述
你能看到当前会话一共有 2 个查询,如果我们想要查看上一个查询的开销,可以使用:

mysql > show profile;

在这里插入图片描述
我们也可以查看指定的 Query ID 的开销,比如 show profile for query 2 查询结果是一样的。在 SHOW PROFILE 中我们可以查看不同部分的开销,比如 cpu、block.io 等:在这里插入图片描述
通过上面的结果,我们可以弄清楚每一步骤的耗时,以及在不同部分,比如 CPU、block.io 的执行时间,这样我们就可以判断出来 SQL 到底慢在哪里。

不过 SHOW PROFILE 命令将被弃用,我们可以从 information_schema 中的 profiling 数据表进行查看。

总结

我今天梳理了 SQL 优化的思路,从步骤上看,我们需要先进行观察和分析,分析工具的使用在日常工作中还是很重要的。今天只介绍了常用的三种分析工具,实际上可以使用的分析工具还有很多。

我在这里总结一下今天文章里提到的三种分析工具。我们可以通过慢查询日志定位执行慢的 SQL,然后通过 EXPLAIN 分析该 SQL 语句是否使用到了索引,以及具体的数据表访问方式是怎样的。我们也可以使用 SHOW PROFILE 进一步了解 SQL 每一步的执行时间,包括 I/O 和 CPU 等资源的使用情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1895040.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

项目管理实用表格与应用【项目文件资料分享】

项目管理基础知识 项目管理可分为五大过程组&#xff08;启动、规划、执行、监控、收尾&#xff09;十大知识领域&#xff0c;其中包含49个子过程 项目十大知识领域分为&#xff1a;项目整合管理、项目范围管理、项目进度管理、项目成本管理、项目质量管理、项目资源管理、项目…

使用 iconfont.ttf文件保存多个图标文件,并且像文字一样使用代码绘制出来

先看演示效果 这里的多个图标其实是存储在 iconfont.ttf文件中 这个文件里面的图标对应的编码 显示代码 void CMFCApplication3Dlg::OnBnClickedOk() {// 加载字体文件CString fontPath = _T("C:\\Users\\35497\\Desktop\\test\\MFCApplication3\\font\\iconfont.ttf&qu…

searchForm自适应布局 + 按钮插槽

收起 展开 代码&#xff1a; useResizeObserverHooks.js import { useEffect, useLayoutEffect } from "react";export const useResizeObserver (containerDom, domClass, callback) > {useLayoutEffect(() > {let resizeObserver null;let dom null;if …

8人团队历时半年打造开源版GPT-4o,零延迟演示引爆全网!人人可免费使用!

目录 01 Moshi 02 背后技术揭秘 GPT-4o可能要等到今年秋季才会公开。 然而&#xff0c;由法国8人团队开发的原生多模态Moshi&#xff0c;已经达到了接近GPT-4o的水平&#xff0c;现场演示几乎没有延迟&#xff0c;吸引了大量AI专家的关注。 令人惊讶的是&#xff0c;开源版的…

代码随想录算法训练营第69天:图论7[1]

代码随想录算法训练营第69天&#xff1a;图论7 109. 冗余连接II 卡码网题目链接&#xff08;ACM模式&#xff09;(opens new window) 题目描述 有向树指满足以下条件的有向图。该树只有一个根节点&#xff0c;所有其他节点都是该根节点的后继。该树除了根节点之外的每一个节…

AI大模型:解锁未来职业竞争力的金钥匙

AI元年&#xff1a;大模型的革新力量 随着ChatGPT的震撼登场&#xff0c;2023年被标记为AI元年&#xff0c;大模型以其前所未有的影响力&#xff0c;重塑我们的日常生活和工作方式。从日常的问答对话到复杂的编程辅助&#xff0c;乃至创意图像生成&#xff0c;AI大模型展现出超…

怎么还有人分不清路由器、交换机、光猫、WiFi……你真的都了解吗?

号主&#xff1a;老杨丨11年资深网络工程师&#xff0c;更多网工提升干货&#xff0c;请关注公众号&#xff1a;网络工程师俱乐部 下午好&#xff0c;我的网工朋友。 讲某个具体技术&#xff0c;说不定你头头是道&#xff0c;但关于路由器、交换机、光猫、WiFi的知识细节&…

AI PC(智能电脑)技术分析

一文看懂AI PC&#xff08;智能电脑&#xff09; 2024年&#xff0c;英特尔、英伟达等芯片巨头革新CPU技术&#xff0c;融入AI算力&#xff0c;为传统PC带来质的飞跃&#xff0c;引领智能计算新时代。 2024年&#xff0c;因此被叫作人工智能电脑&#xff08;AI PC&#xff09;…

我尝试了新的 OpenAI 连接器,真太棒了!

我们上个月发布的新连接器将 Open AI 集成简化为仅需几步操作。我实现了聊天完成 API&#xff08;有和没有上下文&#xff09;&#xff0c;并想编写一个关于其工作原理的快速教程。 先决条件 与往常一样&#xff0c;在进入主要构建之前我们需要做一些准备工作。你会需要&…

FFT 简单基础(matlab

使用 fs 进行采样&#xff0c;进行 N点FFT 选择显示0~N/21点的幅值 横坐标对应频率计算公式&#xff1a; fs * n / N 举个梨子&#xff1a; 频率2kHz采样1s&#xff0c;得到2000个点的序列y(n) 对序列y(n)做4096点的FFT 幅值响应对应的横坐标频率…

隐私信息管理体系认证:守护个人信息,筑牢隐私防线

在数字化浪潮汹涌的当下&#xff0c;个人信息安全问题愈发凸显其重要性。随着互联网技术的飞速发展&#xff0c;我们的隐私信息如同裸露在阳光下的沙滩&#xff0c;稍有不慎就可能被不法分子窃取或滥用。因此&#xff0c;构建一个完善的隐私信息管理体系&#xff0c;成为了保障…

实现第一个神经网络

PyTorch 包含创建和实现神经网络的特殊功能。在本节实验中&#xff0c;将创建一个简单的神经网络&#xff0c;其中一个隐藏层开发一个输出单元。 通过以下步骤使用 PyTorch 实现第一个神经网络。 第1步 首先&#xff0c;需要使用以下命令导入 PyTorch 库。 In [1]: import…

免费通配符/泛域名SSL证书快速申请攻略

在互联网时代&#xff0c;网站安全的重要性日益凸显&#xff0c;而SSL证书作为保障网站安全的关键工具&#xff0c;其重要性不言而喻。对于拥有多个子域名的网站来说&#xff0c;通配符/泛域名SSL证书更是必不可少的安全保障。下面将介绍如何申请免费的通配符/泛域名SSL证书。 …

EXTI寄存器,AFIO的简洁,EXTI配置的流程

一&#xff0c;AFIO简介 AFIO是Alternate Function Input/Output 的缩写&#xff0c;表示复用功能IO&#xff0c;主要用于实现IO端口的复用功能以及外部中断的控制 STM32外设有很多I/O以及内置外设&#xff08;如12C&#xff0c;ADC,ISP,USART等&#xff09;。为节省引出管脚的…

案例分享:数据集市搭建方案中集成SQLFlow数据血缘分析工具

本文中描述的数据集市搭建方案是一家跨国公司在AWS平台上的具体实践案例。我公司参与其中的数据血缘部分的建设&#xff0c;SQLFlow数据血缘分析工具在该方案中帮助用户实现了数据血缘分析。 用户使用Redshift 数据库仓库进行数据集市开发。从各种数据源提取数据&#xff0c;并…

【电路笔记】-B类放大器

B类放大器 文章目录 B类放大器1、概述2、B类放大器介绍3、推挽式配置4、限制交叉失真5、B类放大器效率6、总结1、概述 我们在之前的文章中已经知道,A 类放大器的特点是导通角为 360,理论最大效率为 50%。 在本文中,我们将详细介绍另一类放大器,称为B类放大器,它是为解决A…

CAN总线Bus-off机制介绍及恢复策略说明

CAN总线Bus-off机制介绍及恢复策略说明 Bus-off产生机制 CAN通信Bus-off即总线关闭态,一个CAN节点有三种状态,主动错误状态、被动错误状态以及总线关闭态。如下图可知进入Bus-off的原因是因为发送错误大于255,在此状态节点不能收发报文。 以上三种错误状态标识发生故障的严…

让GNSSRTK不再难【第17讲 RTK定位技术原理-站间单差浮点解--第1部分】

第17讲 RTK定位技术原理-站间单差浮点解 RTK技术其实就是在RTD技术的基础上增加载波观测值的使用。由于伪距的误差在分米量级&#xff0c;即使我们通过站间单差消除掉绝大部分的伪距误差&#xff0c;但受限于伪距的精度&#xff0c;我们也只能达到分米量级的定位水平。 但载波…

【Vue】使用html、css实现鱼骨组件

文章目录 组件测试案例预览图 组件 <template><div class"context"><div class"top"><div class"label-context"><div class"label" v-for"(item, index) in value" :key"index">…