leetcode216.组合总和III、40.组合总和II、39.组合总和

news2025/1/24 8:35:09

216.组合总和III

找出所有相加之和为 n 的 k 个数的组合,且满足下列条件:
只使用数字1到9
每个数字 最多使用一次
返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次,组合可以以任何顺序返回。

示例 1:
输入: k = 3, n = 7
输出: [[1,2,4]]
解释:
1 + 2 + 4 = 7
没有其他符合的组合了。

示例 2:
输入: k = 3, n = 9
输出: [[1,2,6], [1,3,5], [2,3,4]]
解释:
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
没有其他符合的组合了。

示例 3:
输入: k = 4, n = 1
输出: []
解释: 不存在有效的组合。
在[1,9]范围内使用4个不同的数字,我们可以得到的最小和是1+2+3+4 = 10,因为10 > 1,没有有效的组合。

解题思路

本题就是在[1,2,3,4,5,6,7,8,9]这个集合中找到和为n的k个数的组合。
本题k相当于树的深度,9(因为整个集合就是9个数)就是树的宽度。

例如 k = 2,n = 4的话,就是在集合[1,2,3,4,5,6,7,8,9]中求 k(个数) = 2, n(和) = 4的组合。

选取过程如图:
在这里插入图片描述

回溯三部曲

1.确定递归函数参数

和77. 组合一样,依然需要一维数组path来存放符合条件的结果,二维数组result来存放结果集。
这里我依然定义path 和 result为全局变量。
至于为什么取名为path?从上面树形结构中,可以看出,结果其实就是一条根节点到叶子节点的路径。
接下来还需要如下参数:
n(int)目标和,也就是题目中的n。
k(int)就是题目中要求k个数的集合。
sum(int)为已经收集的元素的总和,也就是path里元素的总和。
startIndex(int)为下一层for循环搜索的起始位置。

2、确定终止条件

在上面已经说了,k其实就已经限制树的深度,因为就取k个元素,树再往下深了没有意义。
所以如果pathTop和 k相等了,就终止。
如果此时path里收集到的元素和(sum) 和n(就是题目描述的n)相同了,就用result收集当前的结果。
所以 终止代码如下:

if(pathTop==k){
        if(sum==n){
            int* tmp=(int*)malloc(sizeof(int)*k);
            for(int i=0;i<k;i++){
                tmp[i]=path[i];
            }
            ans[ansTop++]=tmp;
        }
        return;
    }
3、单层搜索过程

本题和77. 组合区别之一就是集合固定的就是9个数[1,…,9],所以for循环固定i<=9
在这里插入图片描述

for(int i=startIdx;i<=9;i++){
        sum+=i;
        path[pathTop++]=i;
         backtracking(n,k,sum,i+1);
          sum-=i;
          pathTop--;
    }

代码

未剪枝

int *path;
 int pathTop;
 int **ans;
 int ansTop;
 void backtracking(int n,int k,int sum,int startIdx){
    if(pathTop==k){
        if(sum==n){
            int* tmp=(int*)malloc(sizeof(int)*k);
            for(int i=0;i<k;i++){
                tmp[i]=path[i];
            }
            ans[ansTop++]=tmp;
        }
        return;
    }
    for(int i=startIdx;i<=9;i++){
        sum+=i;
        path[pathTop++]=i;
         backtracking(n,k,sum,i+1);
          sum-=i;
          pathTop--;
    }

 }
int** combinationSum3(int k, int n, int* returnSize, int** returnColumnSizes) {
    path=(int*)malloc(sizeof(int)*k);
    ans=(int**)malloc(sizeof(int*)*2000);
    pathTop=ansTop=0;
    backtracking(n,k,0,1);
    *returnSize=ansTop;
    *returnColumnSizes=(int*)malloc(sizeof(int)*ansTop);
    for(int i=0;i<ansTop;i++)
         (*returnColumnSizes)[i]=k;
        return ans;
}

剪枝

在这里插入图片描述

int *path;
 int pathTop;
 int **ans;
 int ansTop;
 void backtracking(int n,int k,int sum,int startIdx){
    if(sum>n) return;//剪枝,减去和大于n的分支
    if(pathTop==k){
        if(sum==n){
            int* tmp=(int*)malloc(sizeof(int)*k);
            for(int i=0;i<k;i++){
                tmp[i]=path[i];
            }
            ans[ansTop++]=tmp;
        }
        return;
    }
    for(int i=startIdx;i<=9-(k-pathTop)+1;i++){//剪枝,剪去不满足k个数的分支
        sum+=i;
        path[pathTop++]=i;
         backtracking(n,k,sum,i+1);
          sum-=i;
          pathTop--;
    }

 }
int** combinationSum3(int k, int n, int* returnSize, int** returnColumnSizes) {
    path=(int*)malloc(sizeof(int)*k);
    ans=(int**)malloc(sizeof(int*)*2000);
    pathTop=ansTop=0;
    backtracking(n,k,0,1);
    *returnSize=ansTop;
    *returnColumnSizes=(int*)malloc(sizeof(int)*ansTop);
    for(int i=0;i<ansTop;i++)
         (*returnColumnSizes)[i]=k;
        return ans;
}

40.组合总和II

给定一个可能有重复数字的整数数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。
candidates 中的每个数字在每个组合中只能使用一次,解集不能包含重复的组合。

示例 1:
输入: candidates = [10,1,2,7,6,1,5], target = 8,
输出:
[
[1,1,6],
[1,2,5],
[1,7],
[2,6]
]

示例 2:
输入: candidates = [2,5,2,1,2], target = 5,
输出:
[
[1,2,2],
[5]
]

题目解析

元素在同一个组合内是可以重复的,怎么重复都没事,但两个组合不能相同。所以我们要去重的是同一树层上的“使用过”,同一树枝上的都是一个组合里的元素,不用去重。树层去重的话,需要对数组排序!

回溯三部曲

1、递归函数参数

和77. 组合一样,依然需要一维数组path来存放符合条件的结果,二维数组result来存放结果集。
这里我依然定义path 和 result为全局变量。length存放每个组合的长度。
至于为什么取名为path?从上面树形结构中,可以看出,结果其实就是一条根节点到叶子节点的路径。
接下来还需要如下参数:
target(int)目标和,也就是题目中的n。
candidates(int*)数组
candidatesSize(int)就是题目中数组的大小。
sum(int)为已经收集的元素的总和,也就是path里元素的总和。
startIndex(int)为下一层for循环搜索的起始位置。

2、递归终止条件

终止条件为 sum > target 和 sum == target。

3、单层搜索的逻辑

要去重的是“同一树层上的使用过”,如何判断同一树层上元素(相同的元素)是否使用过了呢。
如果candidates[i] == candidates[i - 1] 并且 i>starIdx,就说明:前一个树枝,使用了candidates[i - 1],也就是说同一树层使用过candidates[i - 1]。
此时for循环里就应该做continue的操作。

int *path;
 int pathTop;
 int **ans;
 int ansTop;
 int* length;
 int cmp(const void* a1, const void* a2) {
    return *((int*)a1) - *((int*)a2);
}
void backtracking(int* candidates,int candidatesSize,int target,int sum,int startIdx){
    if(sum>=target){
        if(sum==target){
            int* tmp=(int*)malloc(sizeof(int)*pathTop);
            for(int j=0;j<pathTop;j++)
            tmp[j]=path[j];
            length[ansTop]=pathTop;//存储当前组合的长度
             ans[ansTop++]=tmp;
        }
        return;
    }
    for(int i=startIdx;i<candidatesSize;i++){
        if(i>startIdx&&candidates[i]==candidates[i-1])continue;
        sum+=candidates[i];
        path[pathTop++]=candidates[i];
        backtracking(candidates,candidatesSize,target,sum,i+1);
        sum-=candidates[i];;
        pathTop--;
    }
}
int** combinationSum2(int* candidates, int candidatesSize, int target, int* returnSize, int** returnColumnSizes){
    path=(int*)malloc(sizeof(int)*50);
    ans=(int**)malloc(sizeof(int*)*100);
     length=(int*)malloc(sizeof(int)*100);
     ansTop=pathTop=0;
      qsort(candidates, candidatesSize, sizeof(int), cmp);
     backtracking(candidates,candidatesSize,target,0,0);
     *returnSize=ansTop;
    *returnColumnSizes=(int*)malloc(sizeof(int)*ansTop);
     for(int i=0;i<ansTop;i++)
     (*returnColumnSizes)[i]=length[i];
     return ans;
}

39.组合总和

给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。
candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。
对于给定的输入,保证和为 target 的不同组合数少于 150 个。

示例 1:
输入:candidates = [2,3,6,7], target = 7
输出:[[2,2,3],[7]]
解释:
2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。
7 也是一个候选, 7 = 7 。
仅有这两种组合。

示例 2:
输入: candidates = [2,3,5], target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]

示例 3:
输入: candidates = [2], target = 1
输出: []

题目解析

在这里插入图片描述

回溯三部曲

1、递归函数参数

和77. 组合一样,依然需要一维数组path来存放符合条件的结果,二维数组result来存放结果集。
这里我依然定义path 和 result为全局变量。length存放每个组合的长度。
至于为什么取名为path?从上面树形结构中,可以看出,结果其实就是一条根节点到叶子节点的路径。
接下来还需要如下参数:
target(int)目标和,也就是题目中的n。
candidates(int*)数组
candidatesSize(int)就是题目中数组的大小。
sum(int)为已经收集的元素的总和,也就是path里元素的总和。
startIndex(int)为下一层for循环搜索的起始位置。

2、递归终止条件

终止条件为 sum > target 和 sum == target。

3、单层搜索的逻辑

单层for循环依然是从startIndex开始,搜索candidates集合。

int* path;
 int pathTop;
 int** ans;
 int ansTop;
 int* length;
void  backtarcking(int* candidates,int candidatesSize,int target,int sum,int startIdx){
    if(sum>=target){
        if(sum==target){
            int* tmp=(int*)malloc(sizeof(int)*pathTop);
            for(int i=0;i<pathTop;i++){
                tmp[i]=path[i];
            }
                length[ansTop]=pathTop;
                ans[ansTop++]=tmp;
            
        }
        return;
    }
    for(int i=startIdx;i<candidatesSize;i++){
        sum+=candidates[i];
        path[pathTop++]=candidates[i];
        backtarcking(candidates,candidatesSize,target,sum,i);
        sum-=candidates[i];
        pathTop--;
    }
}
int** combinationSum(int* candidates, int candidatesSize, int target, int* returnSize, int** returnColumnSizes) {
    path=(int*)malloc(sizeof(int)*50);
    ans=(int**)malloc(sizeof(int*)*200);
    length=(int*)malloc(sizeof(int)*200);
    pathTop=ansTop=0;
    backtarcking(candidates,candidatesSize,target,0,0);
    *returnSize=ansTop;
    *returnColumnSizes=(int*)malloc(sizeof(int)*ansTop);
    for(int i=0;i<ansTop;i++)
    (*returnColumnSizes)[i]=length[i];
    return ans;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1894337.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Spring Boot 源码学习】初识 ConfigurableEnvironment

《Spring Boot 源码学习系列》 初识 ConfigurableEnvironment 一、引言二、主要内容2.1 Environment2.1.1 配置文件&#xff08;profiles&#xff09;2.1.2 属性&#xff08;properties&#xff09; 2.2 ConfigurablePropertyResolver2.2.1 属性类型转换配置2.2.2 占位符配置2.…

单调栈(左小大,右小大)

①寻找每个数左边第一个比它小的数 给定一个长度为 N 的整数数列&#xff0c;输出每个数左边第一个比它小的数&#xff0c;如果不存在则输出 −1。 输入样例&#xff1a; 3 4 2 7 5 输出样例&#xff1a; -1 3 -1 2 2 从左到右遍历&#xff0c;用单调递增&#xff08;栈底到栈顶…

Spring MVC 中 使用 RESTFul 实现用户管理系统

1. Spring MVC 中 使用 RESTFul 实现用户管理系统 文章目录 1. Spring MVC 中 使用 RESTFul 实现用户管理系统2. 静态页面准备2.1 user.css2.2 user_index.html2.3 user_list.html2.4 user_add.html2.5 user_edit.html 3. SpringMVC环境搭建3.1 创建module&#xff1a;usermgt3…

操作审计(一)

操作审计&#xff08;一&#xff09; 前言一、快速查询事件二、高级查询事件总结 前言 这里主要记录操作审计的过程&#xff0c;操作审计其实就是监控并记录阿里云账号的活动&#xff0c;可以使用阿里云的操作审计服务来审计最近90天阿里云账号下的操作&#xff0c;从而确保云…

纯正刊!IF不降反升,国人通过率高>98%,29天录用!无“爆雷”风险

本周投稿推荐 SCI • 能源科学类&#xff0c;1.5-2.0&#xff08;来稿即录25天&#xff09; • 计算机类&#xff0c;2.0-3.0&#xff08;纯正刊29天录用&#xff09; EI • 各领域沾边均可&#xff08;2天录用&#xff09; CNKI • 7天录用-检索&#xff08;急录友好&a…

PhpStorm 2024 for Mac PHP集成开发工具

Mac分享吧 文章目录 效果一、下载软件二、开始安装1、双击运行软件&#xff08;适合自己的M芯片版或Intel芯片版&#xff09;&#xff0c;将其从左侧拖入右侧文件夹中&#xff0c;等待安装完毕2、应用程序显示软件图标&#xff0c;表示安装成功3、打开访达&#xff0c;点击【文…

sql查询练习

1.表的结构 课程表&#xff1a;课程编号cid&#xff0c;课程名称canme&#xff0c;老师tid&#xff0c; 教师表&#xff1a;教师tid&#xff0c;教师姓名tname 分数表&#xff1a;学生student_sid&#xff0c;课程 cours_id&#xff0c;&#xff0c;分数score 学生表&#xff…

谷粒商城-个人笔记(集群部署篇二)

前言 ​学习视频&#xff1a;​Java项目《谷粒商城》架构师级Java项目实战&#xff0c;对标阿里P6-P7&#xff0c;全网最强​学习文档&#xff1a; 谷粒商城-个人笔记(基础篇一)谷粒商城-个人笔记(基础篇二)谷粒商城-个人笔记(基础篇三)谷粒商城-个人笔记(高级篇一)谷粒商城-个…

【SSL 1823】消灭怪物(非传统BFS)

题目大意 小b现在玩一个极其无聊的游戏&#xff0c;它控制角色从基地出发&#xff0c;一路狂奔夺走了对方的水晶&#xff0c;可是正准备回城时&#xff0c;发现地图上已经生成了 n n n 个怪。 现在假设地图是二维平面&#xff0c;所有的怪和角色都认为是在这个二维平面的点上…

鸿翼夯实统一AI基础设施,加速大模型落地释放AI“模”力!

从“百模大战”到“千模大战”&#xff0c;全球通用大模型数量快速增加&#xff0c;将大模型融入企业&#xff0c;建立企业自身的AI基础设施&#xff0c;打造行业或特定领域、任务的专用大模型&#xff0c;助力生产力革新和产业升级&#xff0c;已经成为目前企业关注的核心。 大…

Asp .Net Core 系列:基于 Castle DynamicProxy + Autofac 实践 AOP 以及实现事务、用户填充功能

文章目录 什么是 AOP &#xff1f;.Net Core 中 有哪些 AOP 框架&#xff1f;基于 Castle DynamicProxy 实现 AOPIOC中使用 Castle DynamicProxy实现事务管理实现用户自动填充 什么是 AOP &#xff1f; AOP&#xff08;Aspect-Oriented Programming&#xff0c;面向切面编程&a…

实验二 图像的代数运算

一、实验目的&#xff1a; 1&#xff0e;了解图像的算术运算在数字图像处理中的初步应用。 2&#xff0e;体会图像算术运算处理的过程和处理前后图像的变化。 二、实验内容&#xff1a; 1&#xff0e;图像的加法运算 图像相加一般用于对同一场景的多幅图像求平均效果&…

c语言回顾-内存操作函数

目录 前言 1.memcpy 函数 1.1函数介绍 1.2与strcpy的区别 1.3memcpy的模拟 2.memmove 函数 2.1函数介绍和使用 2.2函数的模拟 3.memset函数 3.1函数介绍 3.2函数的模拟 4.memcmp函数 4.1函数的使用 4.2函数的模拟 结束语 前言 在动态内存的章节中小编详细讲解了动…

pandas数据分析(7)

组合DataFrame 连接 如果只是要将多个DataFrame粘合在一起&#xff0c;那么concat函数是最佳选择。在默认情况下&#xff0c;concat会将DataFrame按行粘合在一起&#xff0c;同时会将各列自动对齐。 如果想要按列进行粘合&#xff0c;需要将axis设置为1&#xff1a; concat的特…

​香橙派AIpro测评:usb鱼眼摄像头的Camera图像获取

一、前言 近期收到了一块受到业界人士关注的开发板"香橙派AIpro",因为这块板子具有极高的性价比&#xff0c;同时还可以兼容ubuntu、安卓等多种操作系统&#xff0c;今天博主便要在一块832g的香橙派AI香橙派AIpro进行YoloV5s算法的部署并使用一个外接的鱼眼USB摄像头…

【Git 学习笔记】gitk 命令与 git log 其他参数的使用

1.7 用 gitk 查看提交历史 # make sure you have gitk installed $ which gitk /usr/bin/gitk # Sync the commit ID $ git checkout master && git reset --hard 13dcad # bring up the gitk interface, --all to see everything $ gitk --all &实测结果&#xf…

11 - matlab m_map地学绘图工具基础函数 - 绘制航迹、椭圆、风向玫瑰图和特定的圆形区域的有关函数及其用法

11 - matlab m_map地学绘图工具基础函数 - 绘制航迹、椭圆、风向玫瑰图和特定的圆形区域的有关函数及其用法 0. 引言1. 关于m_track2. 关于m_range_ring3. 关于m_ellipse4. 关于m_windrose5. 结语 0. 引言 本篇介绍下m_map中绘制航迹图函数&#xff08;m_track&#xff09;、绘…

网络数据传输中的封装与解封装详解

注&#xff1a;机翻&#xff0c;未校对。 The goal of networks is to transmit data from one host to another. 网络的目标是将数据从一个主机传输到另一个主机。 Encapsulation 封装 To achieve this goal, each layer adds its own header to the data. A header contain…

2024年7月5日 十二生肖 今日运势

小运播报&#xff1a;2024年7月5日&#xff0c;星期五&#xff0c;农历五月三十 &#xff08;甲辰年庚午月庚午日&#xff09;&#xff0c;法定工作日。 红榜生肖&#xff1a;狗、羊、虎 需要注意&#xff1a;鸡、牛、鼠 喜神方位&#xff1a;西北方 财神方位&#xff1a;正…

深圳合规新动向,这个关键环节要做好

随着全球商业环境的日益复杂化&#xff0c;企业合规管理已成为维护公司稳健运营和市场竞争力的核心要素。特别是对于位于创新前沿的深圳市&#xff0c;有效的合规管理系统不仅是满足法律和监管要求的必须&#xff0c;更是企业可持续发展的关键。 深圳市在全国率先探索并成功实…