从零开始实现大语言模型(二):文本数据处理

news2024/10/6 12:29:12

1. 前言

神经网络不能直接处理自然语言文本,文本数据处理的核心是做tokenization,将自然语言文本分割成一系列tokens。

本文介绍tokenization的基本原理,OpenAI的GPT系列大语言模型使用的tokenization方法——字节对编码(BPE, byte pair encoding),并构建训练大语言模型的DatasetDataLoader

2. Tokenization

Tokenization的目标是将自然语言文本分割成一系列tokens。在英文自然语言处理领域,最常用的tokenization方法是将英文文本分割成单词及标点符号。在中文自然语言处理领域,往往会将一个字或一个标点符号作为一个token。

如下面的代码所示,可以使用Python自带的正则表达式库re将英文文本分割成不同的单词及标点符号:

import re

sentence = "Hello, world. This, is a test."
tokens = re.split(r'([,.?_!"()\']|\s)', sentence)
tokens = [item for item in tokens if item.strip()]
print(tokens)

执行上面代码,打印结果如下:

['Hello', ',', 'world', '.', 'This', ',', 'is', 'a', 'test', '.']

上面的tokenization示例代码删除掉了文本中的空格。在实际应用中,也可以将空格视为一个单独的字符。删除空格可以显著减少分割文本产生的tokens数量,减少内存消耗,降低计算资源需求。但是在构建代码生成模型等应用场景中,必须将文本中的空格视为一个单独的字符,并编码成相应的token。

3. 将Token转换成数字ID

绝大部分处理自然语言文本的神经网络都包含Embedding层(embedding layer)torch.nn.Embedding。Embedding层存储了不同tokens对应的embedding向量,输入一系列tokens对应的索引列表,Embedding层输出相应tokens对应的embedding向量。

对自然语言文本做tokenization,将文本分割成不同的tokens。Tokens不能直接输入神经网络的Embedding层,需要将tokens转换成数字ID(token ID)。将tokens转换成数字ID首先要构造词汇表(vocabulary)。词汇表定义了不同tokens与数字索引的一一对应关系,可以使用词汇表将分割自然语言文本产生的一系列tokens转换成数字ID列表,也可以通过词汇表将数字ID列表还原成自然语言文本。

如下图所示,构造词汇表需要对训练数据集中全部文本数据做tokenization,获取所有不同的tokens,并一一添加到字典(dict)中。字典的key为训练数据集中的不同tokens,字典的value为相应token添加到字典中的顺序。

图一

可以使用如下代码构造词汇表:

diff_tokens = sorted(set(tokens))
vocabulary = {token: idx for idx, token in enumerate(diff_tokens)}

for item in vocabulary.items():
    print(item)

执行上面代码,打印结果如下:

(',', 0)
('.', 1)
('Hello', 2)
('This', 3)
('a', 4)
('is', 5)
('test', 6)
('world', 7)

4. 常用的特殊Tokens

上述对训练数据集中全部文本数据做tokenization,获取所有不同的tokens,并构造将token映射成数字ID的词汇表的文本数据处理方法无法将训练数据集中不存在的token转换成数字ID。在自然语言处理项目实践中,往往会在词汇表中增加一些特殊tokens,以增强模型理解自然语言文本结构等信息的能力。常用的特殊tokens如下所示:

  • <|unk|>(unknown):该token一般用于表示不在构建的词汇表中的单词或字符
  • <|endoftext|>(end of text):该token一般用于分割两个不相关的文本。训练大语言模型的文本数据一般由许多文本拼接而成,不同文本之间使用<|endoftext|>分隔,使大语言模型可以理解训练数据的组织方式
  • [BOS](beginning of sequence):该token通常位于一段文本的开头,用于给模型提供输入文本的组织结构信息
  • [EOS](end of sequence):该token通常位于一段文本的末尾,用于拼接多个不相关的文本,其作用与<|endoftext|>类似
  • [PAD](padding):训练大语言模型每次会使用一个batch的训练样本,构成一个张量(tensor),张量内所有训练样本token数量必须相同。如果batch中包含不同长度的训练样本,一般会使用[PAD]将较短的训练样本填充至batch中最长训练样本长度

GPT-2系列大语言模型只在词汇表中增加了<|endoftext|>这个特殊token。其使用了一种被称为字节对编码(byte pair encoding)的tokenization方法,该方法分割文本不会产生词汇表不包含的新token。

可以将上述tokenization方法封装成一个Tokenizer类,其中encode函数用于将自然语言文本分割成一系列tokens,并转换成数字ID列表。decode函数用于将数字ID列表还原成自然语言文本:

class Tokenizer:
    def __init__(self, vocabulary):
        self.str_to_int = vocabulary
        self.int_to_str = list(vocabulary.keys())
    
    def encode(self, text):
        preprocessed = re.split(r'([,.?_!"()\']|\s)', text)
        preprocessed = [item for item in preprocessed if item.strip()]
        preprocessed = [item if item in self.str_to_int else "<|unk|>" for item in preprocessed]
        ids = [self.str_to_int[s] for s in preprocessed]
        return ids
        
    def decode(self, ids):
        text = " ".join([self.int_to_str[i] for i in ids])
        text = re.sub(r'\s+([,.?!"()\'])', r'\1', text)
        return text

可以使用如下代码实例化Tokenizer类对象,并调用encodedecode函数,打印示例文本对应的tokens及相应文本内容:

vocabulary.update({"<|unk|>": len(vocabulary), "<|endoftext|>": len(vocabulary) + 1})
text = "Hello world. <|endoftext|> This is a test dataset."

tokenizer = Tokenizer(vocabulary)
print(tokenizer.encode(text))
print(tokenizer.decode(tokenizer.encode(text)))

执行上面代码,打印结果如下:

[2, 7, 1, 9, 3, 5, 4, 6, 8, 1]
Hello world. <|endoftext|> This is a test <|unk|>.

5. 字节对编码(Byte Pair Encoding)

字节对编码(BPE)是大语言模型GPT-2、GPT-3以及ChatGPT使用的tokenization方法。BPE会将所有单个字符(如"a","b"等)以及频繁出现的字符组合(subtoken)添加到词汇表中(如字符"d"和"e"的组合"de"在许多英文单词中很常见,因此会将"de"添加到词汇表中作为一个token)。

如下图所示,BPE可以将不在其词汇表中的单词分解成粒度更小的字符或字符组合,因此OpenAI的GPT系列模型不用<|unk|>等特殊token来处理不在其词汇表中的单词。

图二

OpenAI开源了其使用Rust语言实现的非常高效的BPE算法tiktoken库,可以使用如下命令安装tiktoken:

!pip install tiktoken==0.5.1

使用tiktoken.encoding_for_model方法创建tokenizer对象,加载大语言模型GPT-2所使用的词汇表,并调用encodedecode函数,测试BPE算法:

import tiktoken

tokenizer = tiktoken.encoding_for_model("gpt2")
text = "Hello, do you like tea? <|endoftext|> In the sunlit terraces of someunknownPlace."
integers = tokenizer.encode(text, allowed_special={"<|endoftext|>"})
print(integers)
strings = tokenizer.decode(integers)
print(strings)

执行上面代码,打印结果如下:

[15496, 11, 466, 345, 588, 8887, 30, 220, 50256, 554, 262, 4252, 18250, 8812, 2114, 286, 617, 34680, 27271, 13]
Hello, do you like tea? <|endoftext|> In the sunlit terraces of someunknownPlace.

创建tokenizer对象并加载大语言模型GPT-3.5所使用的词汇表,可以使用tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")方法。加载大语言模型GPT-4所使用的词汇表,可以使用tokenizer = tiktoken.encoding_for_model("gpt-4")

查看tiktoken的内部源码可知,大语言模型GPT-3.5及GPT-4所使用的词汇表完全相同。

6. 构建训练大语言模型的Dataset及DataLoader

6.1 大语言模型的训练样本

预训练大语言模型的数据集包含许多自然语言文档,不同文档的内容使用<|endoftext|>拼接,构成一个非常长的文本字符串,使用上述BPE算法可以将该字符串转变成数字ID列表。

使用下一个token预测任务预训练大语言模型,从数字ID列表中随机抽取一个长度为context_len的子列表输入大语言模型。大语言模型可以执行context_len次下一个token预测任务,共预测输出context_len个tokens。

如下图所示,假设context_len等于8,则第一次下一个token预测任务大模型根据输入LLMs预测learn,第二次根据输入LLMs learn预测to。依此类推,第八次根据输入LLMs learn to predict one word at a预测time

图三

在实际训练大语言模型时,会输入长度为context_len的数字ID列表,每个数字对应一个token,而不是输入一个字符串。

因此可以使用如下规则构建训练大语言模型的训练样本。每个训练样本包含一个input-target pair,其中:

  • input:从训练数据集对应的数字ID列表中随机抽取的长度为context_len的子列表
  • target:将input子列表向后移一个token对应的子列表,其中target中第 i i i个token ID为input中第 i − 1 i-1 i1个token ID

理论上,长度为 n n n的token ID列表对应的训练数据集最多可以构造出 n − context_len + 1 n-\text{context\_len}+1 ncontext_len+1个不同的训练样本。实际上,会使用stride控制两个相邻训练样本之间的重叠tokens数量。如果 stride = = 1 \text{stride}==1 stride==1,则两个相邻的训练样本存在个 context_len − 1 \text{context\_len}-1 context_len1重叠的tokens,第 i i i个训练样本的target即为第 i + 1 i+1 i+1个训练样本的input。如果 stride = = context_len \text{stride}==\text{context\_len} stride==context_len,则两个相邻训练样本之间不存在重叠的tokens。stride越小,则可以构造出更多训练样本,但是模型更容易过拟合。stride越大,模型越不容易过拟合,但是同一个训练数据集中构造的训练样本数会更少。

6.2 构建Dataset

Pytorch提供的高效组织及加载训练数据的模块由DatasetDataLoader类构成,其中Dataset类用于定义如何加载每个训练样本,DataLoader类用于随机打乱训练数据集,并将训练数据集划分到不同的batch。

构建训练数据集对应的Dataset,需要实现一个Dataset的子类,并重写__init__构造方法,__getitem__方法,以及__len__方法。__init__方法用于初始化与访问训练数据相关的属性,如文件路径、数据库连接器等等。如果训练数据集不是特别大,可以在__init__方法中将整个训练数据集全部读取到内存中。如果训练数据集特别大,无法一次全部加载进内存,一般只会在__init__方法中初始化数据文件路径,后续实际要用到相应数据时才会去读取。__getitem__中实现了根据索引返回相应训练样本的方法。在DataLoader类的实例化对象获取一个batch的训练样本时,__getitem__方法会被调用batch_size次,共传入batch_size个不同的索引,返回batch_size个不同的训练样本,构成一个训练大语言模型的batch。__len__方法定义了训练数据集的大小,假设__len__方法返回训练数据集的大小为10,则每次调用__getitem__方法传入的索引均为0-9之间(包括0和9)的整数。

综上所述,可以使用如下代码构建训练大语言模型的Dataset

import os
import json
import random

import torch
import tiktoken
from torch.utils.data import Dataset


class LLMDataset(Dataset):
    def __init__(self, data_path, file_index_dir, vocabulary, special_token_id, context_len, stride):
        self.tokenizer = tiktoken.encoding_for_model(vocabulary)
        self.special_token_id = special_token_id
        self.context_len = context_len
        self.stride = stride

        if not os.path.exists(file_index_dir):
            os.makedirs(file_index_dir, exist_ok=True)
        file_index_path = os.path.join(file_index_dir, "file_index.json")

        if not os.path.isfile(file_index_path):
            support_file_paths = []
            for root, dirs, files in os.walk(data_path):
                for file in files:
                    if file.endswith((".txt", ".md")):
                        file_path = os.path.join(root, file)
                        support_file_paths.append(file_path)
            random.shuffle(support_file_paths)

            file_indexes, total_tokens = dict(), 0
            for file_path in support_file_paths:
                with open(file_path, "rt", encoding="utf-8") as f:
                    file_token = self.tokenizer.encode(
                        f.read(), allowed_special=self.tokenizer.special_tokens_set
                    )
                file_indexes[file_path] = [total_tokens, total_tokens + len(file_token)]
                total_tokens += len(file_token) + 1
            with open(file_index_path, "wt", encoding="utf-8") as f:
                json.dump(file_indexes, f, ensure_ascii=False)

        with open(file_index_path, "rt", encoding="utf-8") as f:
            self.file_index = json.load(f)
        max_token_index = list(self.file_index.values())[-1][1]
        self.num_sample = (max_token_index - context_len) // stride + 1

    def __getitem__(self, index):
        index_files = self._index_files(index)
        start_index = index * self.stride
        stop_index = start_index + self.context_len

        sample = []
        for file_path in index_files:
            index_range = self.file_index[file_path]
            file_start, file_end = 0, index_range[1] - index_range[0] + 1

            if index_range[0] <= start_index <= index_range[1]:
                file_start = start_index - index_range[0]
            if index_range[0] <= stop_index <= index_range[1]:
                file_end = stop_index - index_range[0] + 1

            with open(file_path, "rt", encoding="utf-8") as f:
                tokens = self.tokenizer.encode(
                    f.read(), allowed_special=self.tokenizer.special_tokens_set
                )
                tokens.append(self.special_token_id)

            sample.extend(tokens[file_start: file_end])
        return torch.tensor(sample[:-1]), torch.tensor(sample[1:])

    def __len__(self):
        return self.num_sample

    def _index_files(self, index):
        index_files = []
        start_file, stop_file = None, None
        start_index = index * self.stride
        stop_index = start_index + self.context_len
        for file_path, index_range in self.file_index.items():
            if index_range[0] <= start_index <= index_range[1]:
                start_file = file_path
            if start_file is not None:
                index_files.append(file_path)
            if index_range[0] <= stop_index <= index_range[1]:
                stop_file = file_path
            if stop_file is not None:
                break
        return index_files

LLMDataset类的__init__方法中通过self.tokenizer = tiktoken.encoding_for_model(vocabulary)初始化了将文本转换为token ID的BPE tokenizer。遍历整个训练数据集中的.txt.md文件,初始化了一个key为文件路径,value为文件中全部token的[起始索引, 终止索引]列表的字典self.file_index,用于在__getitem__方法中根据索引找到相应训练样本所在文件。初始化了记录训练数据集中可构造训练样本总数的变量self.num_sample

__getitem__方法调用self._index_files(index)函数,返回index对应的训练样本所分布的文件路径。遍历文件路径列表index_files,从各个文件中取出属于index对应训练样本部分的tokens,并组合成训练样本sample

上述训练大语言模型的LLMDataset并没有将训练数据一次全部加载进内存,只在__init__方法中记录了训练数据文件,并在调用__getitem__方法时根据index实时读取所需文件,构造训练样本。这种方法可以不用将全部训练数据加载进内存,但是需要耗费一定时间完成训练样本构造。

构建训练大语言模型的DataLoader时,可以通过设置num_workers,使数据读取与模型训练并行进行。只要LLMDataset中的训练数据构造效率不是特别慢,一般不会影响模型训练效率。

如果训练大语言模型的计算服务器集群内存足够大到可以将整个训练数据集一次性全部加载进内存,构建训练大语言模型的Dataset时,可以在__init__方法中读取训练数据集中的全部.txt.md文档,将不同文档的内容使用<|endoftext|>拼接,构成一个非常长的文本字符串,并使用BPE tokenizer分别将该字符串转变成token ID列表,存入计算服务器集群的内存。

虽然可以在构建训练大语言模型的DataLoader时,通过设置num_workers,使数据读取与模型训练并行进行,一定程度上避免训练数据构造效率对模型训练的影响。但是在内存资源充足的情况下,直接在__init__方法中将整个训练数据集全部加载进内存,从而提升__getitem__方法中根据指定index构造训练数据的速度,可以使模型训练的整体效率至少不比使用上面构建的Dataset差。具体代码如下所示:

class LLMDataset(Dataset):
    def __init__(self, data_path, vocabulary, special_token_id, context_len, stride):
        self.context_len = context_len
        self.stride = stride

        support_file_paths = []
        for root, dirs, files in os.walk(data_path):
            for file in files:
                if file.endswith((".txt", ".md")):
                    file_path = os.path.join(root, file)
                    support_file_paths.append(file_path)
        random.shuffle(support_file_paths)

        self.tokens = []
        tokenizer = tiktoken.encoding_for_model(vocabulary)
        for file_path in support_file_paths:
            with open(file_path, "rt", encoding="utf-8") as f:
                file_token = tokenizer.encode(f.read(), allowed_special=tokenizer.special_tokens_set)
                file_token.append(special_token_id)
            self.tokens.extend(file_token)

        self.num_sample = (len(self.tokens) - context_len - 1) // stride + 1

    def __getitem__(self, index):
        start_index = index * self.stride
        x = self.tokens[start_index: start_index + self.context_len]
        y = self.tokens[start_index + 1: start_index + self.context_len + 1]
        return torch.tensor(x), torch.tensor(y)

    def __len__(self):
        return self.num_sample

6.3 构建DataLoader

构建分batch读取训练数据的DataLoader,只需要传入一个Dataset对象,并实例化DataLoader类对象。可以使用如下代码构建训练大语言模型的DataLoader

from torch.utils.data import DataLoader

batch_size = 16
random_seed = 123

torch.manual_seed(random_seed)

dataset = LLMDataset(data_path="some_data_folder_path")
train_loader = DataLoader(
    dataset=dataset,
    batch_size=batch_size,
    shuffle=True,
    num_workers=4,
    drop_last=True
)

shuffle参数用于控制是否随机打乱训练数据集。如果shuffle设置为FalseDataLoader会依据索引从小到大的顺序依次生成不同batch的训练数据。如果shuffle设置为TrueDataLoader会随机打乱所有训练样本的索引,并按照随机打乱后的索引顺序依次生成不同batch的训练数据。一般会将训练数据集对应DataLoadershuffle参数设置为True,确保不同batch的训练数据是独立同分布的。测试数据集对应DataLoadershuffle参数一般会设置为False,因为测试数据集中数据不被用于训练模型,保存数据测试顺序信息有助于分析数据测试结果。

通过torch.manual_seed(random_seed)指定随机数种子,可以使DataLoader在不同次训练流程中生成完全相同的训练样本索引随机排列,但是一次训练流程的对训练数据集的不同次迭代中,训练样本索引的随机排列会各不相同。设置随机数种子有助于神经网络训练结果复现,但是不会使得在训练过程中陷入重复的更新周期。

假设训练数据集共包含5个不同的训练样本,构建DataLoader时设置shuffle参数为True,则在一次训练流程的前3次对训练数据集的遍历过程中,访问训练数据的顺序可能如下(不同随机数种子会产生不同的访问顺序):

  • 第一次遍历训练数据集的顺序:[3, 4, 1, 0, 2]
  • 第二次遍历训练数据集的顺序:[2, 1, 0, 3, 4]
  • 第三次遍历训练数据集的顺序:[1, 4, 0, 3, 2]

保持随机数种子不变,第二次执行训练代码,在第二次训练流程中的前3次对训练数据集的遍历顺序必定与上面的遍历顺序相同。

如果在训练大语言模型时程序异常中断,从保存的断点(checkpoint)处恢复训练环境,需要特别注意随机数种子的设置与变更。如果从某个batch对应的checkpoint恢复训练环境,只需要使用同一个随机数种子,并跳过前 k k k个已经训练的batch即可。如果从某个epoch对应的checkpoint处继续训练模型,需要变更随机数种子,确保新的一轮训练遍历训练数据集的顺序与上一次遍历训练数据集的顺序不一致。在训练大语言模型时,建议不同epoch使用不同的随机数种子,并记录随机数种子的使用顺序。

batch_size是指训练大语言模型的一个batch中包含训练样本的数量。batch_size越小,则训练大语言模型要求的显卡最大内存越小,但是会导致计算出的更新大语言模型的梯度方差较大,影响大语言模型训练时的收敛速度及模型最终效果。batch_size的设置可以参考OpenAI训练GPT系列大语言模型的论文,或者设置成当前显卡内存资源允许的最大值。

在实际训练大语言模型时,训练数据集中的训练样本数量一般不太可能恰好构成整数个batch,最后一个batch很可能仅包含相对非常少的训练样本。在一个训练的epoch中,使用包含训练样本数量非常少的batch作为最后一个batch会引入一次噪声较大的更新梯度,影响训练大语言模型时的收敛效果。将drop_last设置为True,会将每个epoch中的最后一个batch丢弃,不参与模型参数更新。

num_workers参数用于控制数据并行加载及预处理。如下图所示,在使用GPU训练大语言模型时,CPU不仅要与GPU交互处理深度学习模型参数调度等任务,还要加载及预处理训练数据。如果num_workers=0,系统将使用主进程加载数据,数据处理与GPU任务调度时串行的,GPU在CPU加载及预处理训练数据时处于空闲状态,会明显降低模型训练速度及GPU利用率。如果num_workers大于0,系统将启动多个工作进程并行加载及预处理训练数据,使主进程专注于GPU资源及训练任务调度。num_workers必须根据系统计算资源及训练数据集情况来确定,根据实践经验,大部分情况下将num_workers设置为4可以比较高效地利用系统计算资源。

图四

7. 结束语

本文详细讲解了文本数据处理的方法,并构建了训练大语言模型的DatasetDataLoader。请坐好站稳,我们将要去深入了解大语言模型的神经网络架构了!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1887360.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

VUE3 播放RTSP实时、回放(NVR录像机)视频流(使用WebRTC)

1、下载webrtc-streamer&#xff0c;下载的最新window版本 Releases mpromonet/webrtc-streamer GitHub 2、解压下载包 3、webrtc-streamer.exe启动服务 &#xff08;注意&#xff1a;这里可以通过当前文件夹下用cmd命令webrtc-streamer.exe -o这样占用cpu会很少&#xff0c…

echarts用pictorialBar实现3D柱状图

先看下效果 实现思路 描绘一个普通的柱状图通过象形柱图&#xff08;pictorialBar&#xff09;在柱状图的顶部添加一个图形类型&#xff08;symbol&#xff09;菱形 代码实现 <template><div id"symbolBar"></div> </template> <scrip…

jenkins在使用pipeline时,为何没有方块形视图

项目场景&#xff1a; 安装完Jenkins时后&#xff0c;通过pipeline创建的项目任务。 问题描述 在立即构建后&#xff0c;没有显示每个阶段的视图。 原因分析&#xff1a; 原因是&#xff0c;刚安装的Jenkins&#xff0c;这个视图不是Jenkins自带的功能&#xff0c;而必须安装…

分班查询系统,老师们应该如何制作?

新学期的开始&#xff0c;作为教师&#xff0c;我们面临的一项关键任务就是组织分班。传统分班方法往往需要处理大量的数据&#xff0c;这个过程不仅耗时&#xff0c;而且容易出错。为了简化这一流程&#xff0c;提高效率&#xff0c;我们可以利用现代技术&#xff0c;创建一个…

不要再被骗了!电脑无法进入系统的原因可能是这个硬件坏了而已……

前言 前段时间小白在抖音上发了很多很多很多的视频&#xff0c;其中应该是有很多商家关注了小白。 然后就会出现很多很多很多的赚钱小门道…… 电脑开机没有显示&#xff1f;换显卡&#xff01; 电脑还是不开机&#xff1f;换CPU 电脑还是一样不开机…… 经过了一番大折腾…

三步学会使用WebSocekt

目录 一 什么是websocket 二 如何使用websocket 1.导入websocket的maven坐标 2.创建websocket的服务类 3.创建websocket的配置类 4.按需求实现业务逻辑 5.前端实现websocket 一 什么是websocket websocket和HTTP一样是基于TCP的一个通信协议。不过他是支持客户端和服务端…

鸿蒙开发Ability Kit(程序访问控制):【使用粘贴控件】

使用粘贴控件 粘贴控件是一种特殊的系统安全控件&#xff0c;它允许应用在用户的授权下无提示地读取剪贴板数据。 在应用集成粘贴控件后&#xff0c;用户点击该控件&#xff0c;应用读取剪贴板数据时不会弹窗提示。可以用于任何应用需要读取剪贴板的场景&#xff0c;避免弹窗…

JDK动态代理-AOP编程

AOPTest.java&#xff0c;相当于main函数&#xff0c;经过代理工厂出来的Hello类对象就不一样了&#xff0c;这是Proxy.newProxyInstance返回的对象&#xff0c;会hello.addUser会替换为invoke函数&#xff0c;比如这里的hello.addUser("sun", "13434");会…

将数据切分成N份,采用NCCL异步通信,让all_gather+matmul尽量Overlap

将数据切分成N份,采用NCCL异步通信,让all_gathermatmul尽量Overlap 一.测试数据二.测试环境三.普通实现四.分块实现 本文演示了如何将数据切分成N份,采用NCCL异步通信,让all_gathermatmul尽量Overlap 一.测试数据 1.测试规模:8192*8192 world_size22.单算子:all_gather:0.035…

数字化供应链:背景特点

​背景 1、外部环境 近年来&#xff0c;供应链脆弱性凸显&#xff0c;企业供应链压力难以缓解。 美国媒体针对美国零售联合会、美国服装和鞋类协会、美国供应链管理专业委员会等主体进行的一项供应链调查显示&#xff1a; 61%的供应链经理预计&#xff0c;供应链紊乱问题至少…

在IDEA中创建Maven项目

相关内容&#xff1a; Maven的安装与配置 在IDEA中配置Maven环境 IDEA中导入Maven项目 2023版IDEA创建Maven项目&#xff08;新版&#xff09; 1.打开IDEA&#xff0c;点击 文件 -> 新建 -> 项目 2.创建Maven项目 3.编写java文件并运行 在src -> java -> 创建…

xcode运行ios项目报错Sandbox: rsync.samba(24352) deny(1) file-write-create

xcode运行ios项目报错 Sandbox: rsync.samba(24352) deny(1) file-write-create 解决方案&#xff1a; Update your Xcode project build option ENABLE_USER_SCRIPT_SANDBOXING to No.

谷歌GenType:1分钟生成AI艺术字母表,小众但好用,完全免费!(附教程)

文章首发于公众号&#xff1a;X小鹿AI副业 大家好&#xff0c;我是程序员X小鹿&#xff0c;前互联网大厂程序员&#xff0c;自由职业2年&#xff0c;也一名 AIGC 爱好者&#xff0c;持续分享更多前沿的「AI 工具」和「AI副业玩法」&#xff0c;欢迎一起交流~ 最近发现一个好玩的…

2024最新版Redis常见面试题包含详细讲解

Redis适用于哪些场景&#xff1f; 缓存分布式锁降级限流消息队列延迟消息队 说一说缓存穿透 缓存穿透的概念 用户频繁的发起恶意请求查询缓存中和数据库中都不存在的数据&#xff0c;查询积累到一定量级导致数据库压力过大甚至宕机。 缓存穿透的原因 比如正常情况下用户发…

维护Nginx千字经验总结

Hello , 我是恒 。 维护putty和nginx两个项目好久了&#xff0c;用面向底层的思路去接触 在nginx社区的收获不少&#xff0c;在这里谈谈我的感悟 Nginx的夺冠不是偶然 高速:一方面&#xff0c;在正常情况下&#xff0c;单次请求会得到更快的响应&#xff1b;另一方面&#xff0…

1996-2023年各省财政收支数据(无缺失)(地方财政一般预算收入、地方财政一般预算支出)

1996-2023年各省财政收支数据&#xff08;无缺失&#xff09;&#xff08;地方财政一般预算收入、地方财政一般预算支出&#xff09; 1、时间&#xff1a;1996-2023年 2、来源&#xff1a;国家统计局、统计年鉴、 3、指标&#xff1a;地方财政一般预算收入、地方财政一般预算…

51单片机第23步_定时器1工作在模式0(13位定时器)

重点学习51单片机定时器1工作在模式0的应用。 在51单片机中&#xff0c;定时器1工作在模式0&#xff0c;它和定时器0一样&#xff0c;TL1占低5位&#xff0c;TH1占高8位&#xff0c;合计13位&#xff0c;也是向上计数。 1、定时器1工作在模式0 1)、定时器1工作在模式0的框图…

SUPERVIVE无法联机、联机失败、联机报错的解决办法分享

SUPERVIVE是一款战术竞技游戏&#xff0c;核心玩法为多人大逃杀&#xff0c;40名玩家可以自愿或随机组成2或4人小分队&#xff0c;空降进入末日地图&#xff0c;一边苟着收集资源&#xff0c;一边武装自己&#xff0c;在生存区不断首夺的同时&#xff0c;努力战到最后&#xff…

pycharm中新建的临时python文件存放在哪里?

在pycharm中建立的临时python文件&#xff0c;从哪里可以找到呢&#xff1f; 1.我们打开cmd窗口&#xff0c;进入根目录&#xff0c;用dos命令“dir scratch*.py/a/s”进行查找&#xff0c;发现这些临时文件存放在Roaming\JetBrains\PyCharmCE2022.2\scratches 的目录里面 2.…

2Python的Pandas:读取数据

1.读取Excel文件 1.1.读取数据 import pandas as pd# Excel 文件的 URL 或本地路径 url "https://www.gairuo.com/file/data/dataset/team.xlsx"# 使用 Pandas 的 read_excel 函数读取数据 try:df pd.read_excel(url)print(df.head()) # 打印 DataFrame 的前几行…