基于索尼基于索尼Spresense的眼睛跟随平台中两个模型的对比

news2025/1/6 20:12:16

1.模型一(现在使用的)

请添加图片描述
这个模型是一个简单的神经网络,由三个主要组件组成:输入层、一个全连接层(Affine层)、一个Sigmoid激活函数层和一个Binary Cross Entropy损失层。
以下是每个组件的说明:

  1. Input 层:这是模型的输入层,表示输入数据的形状为1, 28, 28。这通常是表示灰度图像的维度,即单通道图像,宽度为28像素,高度也为28像素。
  2. Affine 层:这是一个全连接层,也被称为线性变换层。在这个层中,每个输入节点都与输出节点有一个权重(w)和偏差(b)。权重和偏差是在训练过程中通过反向传播算法更新的参数。全连接层将所有的输入节点连接到输出节点,形成一个线性的关系。在这个例子中,输入和输出的维度都是1,所以这是一个单输出的线性层。
  3. Sigmoid激活函数层:Sigmoid函数是一个常见的激活函数,它将任何实数值压缩到0到1之间。这个函数常用于二分类问题,因为它可以将输出映射到概率区间。在 Affine 层之后使用 Sigmoid 函数可以帮助我们得到一个接近于0或1的概率值,这对于二分类任务非常有用。
  4. Binary Cross Entropy Loss 层:这是损失函数层,用于衡量模型预测的结果与真实标签之间的差距。
    它测量的是模型预测的概率分布与真实类别分布之间的距离。在训练过程中,我们会最小化这个损失函数来优化模型的权重和偏差。这个模型适用于二分类问题,例如识别手写数字等任务。输入图像经过全连接层和Sigmoid激活函数后,得到一个0到1之间的概率值,表示属于某一类别的可能性。然后,Binary Cross Entropy Loss 层用来比较模型预测的概率与实际标签,以便在训练过程中调整模型参数以提高准确性。

模型二我们改进后(将在下个版本使用的)

请添加图片描述
它由几个不同的层组成,包括输入层、图像增强层、卷积层、最大池化层、双曲正切激活函数层、全连接层和sigmoid激活函数层,以及二元交叉熵损失层。
以下是对各个层及其功能的详细解释:

  1. 输入层(Dataset: x):这是模型的起始点,表示输入数据的形状为1, 28, 28,通常对应着灰度图像的尺寸。
  2. 图像增强层:这一层负责对输入图像进行增强,例如随机平移,以增加数据的多样性和泛化能力。
  3. 卷积层(核形状:7, 7):卷积层用于提取图像特征,它使用7x7的卷积核对输入图像进行滑动窗口操作,生成新的特征图。
  4. 最大池化层(形状:4, 4):最大池化层用于减小特征图的尺寸,提高计算效率,同时保留最重要的特征。
  5. 双曲正切激活函数层(Tanh):这是一种非线性激活函数,用于给模型引入非线性特性。
  6. 全连接层:全连接层将所有输入节点连接到输出节点,权重和偏差会在训练过程中被优化。
  7. Sigmoid激活函数层:Sigmoid函数将输出映射到0到1之间,适合二分类问题。
  8. 二元交叉熵损失层:这是用于训练过程中的损失函数,用于衡量模型预测结果与真实标签之间的差距。

两个模型对比

模型2与模型1相比,模型2增加了图像增强层和卷积层,以及最大池化层和双曲正切激活函数层。
这些额外的层提供了以下优势:
•图像增强层:通过对输入图像进行随机平移,增强了数据集的多样性,提高了模型的泛化能力,使其更能应对各种情况下的输入。
•卷积层:利用卷积核提取图像特征,减少了人工特征工程的需求,自动学习特征,提高了模型的准确性和效率。
•最大池化层:通过下采样降低了特征图的尺寸,减少了计算量,同时也保留了重要特征。
•双曲正切激活函数层:引入了非线性,使得模型能够学习更复杂的模式。总体来说,模型2比之前的模型1更加复杂且专门针对图像处理任务进行了优化。它能够更好地处理图像数据,特别是对于图像分类任务.

当我们将数据输入输入层时两个模型的工作步骤

模型一

  1. 输入层: 图片的原始像素值会作为输入传递给模型。由于模型的输入层接受1x28x28的图像,图片会被直接送入下一个处理层。
  2. 全连接层(Affine Layer): 输入的图像数据将被展平成一个向量,然后传递给全连接层。在这个层中,每个输入像素值都会乘以对应的权重,并加上一个偏差值,产生一个线性组合。这个线性组合的结果将被传递到下一层。
  3. Sigmoid激活函数层: 在全连接层之后,数据会通过Sigmoid激活函数。Sigmoid函数会将每个线性组合的输出值转换到0和1之间,引入非线性变换,使得模型能够拟合更复杂的决策边界。
  4. 二元交叉熵损失层: 在模型的最后一层,输出值会被视为该图像属于特定类别的概率。如果模型正在训练中,二元交叉熵损失函数会根据预测概率与实际标签的对比来计算损失,指导模型权重和偏差的调整,以最小化预测错误。

模型二

1.输入层: 图片首先会被加载到模型的输入层。因为模型期望的输入形状是1x28x28,这意味着图片会被展平成一个一维数组,长度为28x28 = 784。但是,在这个特定的架构中,由于输入层直接连接到了卷积层,所以图像可能会保持其原始的2D形状(28x28),并且深度为1(因为它是灰度图,只有一个通道)。
2. 图像增强层: 在这个阶段,输入的图像可能会被随机平移,这有助于模型学习到更加鲁棒的特征,即使在轻微的位置变化下也能正确分类。
3. 卷积层: 卷积核(7x7大小)会在图像上滑动,执行点积操作以产生特征图。每个卷积核都会检测图像的不同特征,如边缘、纹理或特定的图案。由于输入图像的大小为28x28,卷积后产生的特征图的大小将取决于卷积核的步长和填充方式。
4. 最大池化层: 最大池化操作会从特征图的每个4x4区域内抽取最大值,从而降低空间维度,减少计算量,并帮助模型对位置变化具有一定的不变性。
5. 双曲正切激活函数层: 激活函数如双曲正切(tanh)会对前一层的输出应用非线性变换,允许模型学习和表示复杂的非线性关系。
6. 全连接层: 在这一步,所有特征图会被展平成一个一维向量,然后输入到一个或多个全连接层中。全连接层中的每一个神经元都与前一层的所有输出相连,这样模型就能整合所有特征图的信息,形成更高层次的抽象表示。
7. Sigmoid激活函数层: 最后一层使用sigmoid函数,将输出压缩到0和1之间,这适用于二分类问题。输出值可以被解释为输入图像属于某个类别的概率。
8. 二元交叉熵损失层: 如果是在训练阶段,损失函数(这里是二元交叉熵)会评估模型的预测与实际标签之间的差异,以便更新权重和偏置,优化模型性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1887195.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2024 COMMUNITY DAY User Group 社区嘉年华 云计算与 AI 技术交融盛会共筑多元智慧未来

亚马逊云科技User Group,深圳 Community Day 活动流程抢先知道! ⏰ 7月7日 🏠 深圳南山区香港中文大学 📣主论坛国际大咖云集,共襄科技盛宴! 🎉三大主题论坛:人工智能、大数据、动…

heic格式转化jpg,手把手教你将heic转换成jpg【办公必备】

一、什么是heic heic格式是一种高效的图片格式,它可以在较小的文件大小下提供高质量的图片。 二、如何打开heic 然而,这种图片因其格式的特殊性,在实际应用中仍存在一些问题:压缩效果可能不够理想,一些老旧的软件和设…

无线领夹麦克风品牌排名更新,手机直播麦克风前十排名!

在自媒体时代,音频设备尤其是麦克风的重要性日益凸显。技术的革新带来了麦克风品类的多样化,满足了从传统录制到现代自媒体创作的广泛需求。音频质量是决定视频作品能否吸引并留住观众的关键因素。在众多麦克风品牌中,挑选一款性能卓越的产品…

一切为了安全丨2024中国应急(消防)品牌巡展武汉站成功召开!

消防品牌巡展武汉站 6月28日,由中国安全产业协会指导,中国安全产业协会应急创新分会、应急救援产业网联合主办,湖北消防协会协办的“一切为了安全”2024年中国应急(消防)品牌巡展-武汉站成功举办。该巡展旨在展示中国应急(消防&am…

【软件测试】单元测试、系统测试、集成测试详解

🍅 视频学习:文末有免费的配套视频可观看 🍅 点击文末小卡片,免费获取软件测试全套资料,资料在手,涨薪更快 一、单元测试的概念 单元测试是对软件基本组成单元进行的测试,如函数或一个类的方法…

cesium 聚合

cesium 聚合(下面附有源码) 示例代码 <html lang="en"><head><!-- Use correct character set. -->

AI工具哪里找?这个ai导航网站绝对是你不可错过的宝藏

这两年来&#xff0c;人工智能技术飞速发展并且已经渗透到我们生活的方方面面&#xff0c;从简单的日常任务到复杂的专业领域&#xff0c;AI工具的应用越来越广泛。 无论是办公一族还是设计师&#xff0c;教师等&#xff0c;都开始利用AI&#xff0c;提高自己的工作效率。 如…

QChartView显示实时更新的温度曲线图(动态曲线图)

文章目录 参考图1. 项目结构2. CMakeLists.txt3. main.cpp4. TemperatureSeries.qml5. main.qml6. 说明参考博客参考图 要在Qt QML中使用QChartView显示实时更新的温度曲线图,我们需要使用Qt Charts模块和一些QML组件。下面是一个完整的示例代码,以及详细说明每个部分的作用。…

代码生成器使用指南,JeecgBoot低代码平台

JeecgBoot 提供强大的代码生成器&#xff0c;让前后端代码一键生成&#xff0c;实现低代码开发。支持单表、树列表、一对多、一对一等数据模型&#xff0c;增删改查功能一键生成&#xff0c;菜单配置直接使用。 同时提供强大模板机制&#xff0c;支持自定义模板&#xff0c;目…

基于Canvas的Html5多时区动态时钟实战

目录 前言 一、关于Canvas技术 1、Canvas是什么 2、Canvas的属性及渲染特性 二、Canvas动态多时区展示 1、新建html页面 2、创建Canvas对象 3、绘制所有的时钟 总结 前言 出差旅行相信大家一定会住酒店&#xff0c;大家在酒店的前台进行预订的时候&#xff0c;是不是都…

简单实现Anaconda/Miniforge虚拟环境的克隆和迁移

简单实现Anaconda/Miniforge虚拟环境的克隆和迁移 一、问题描述一、方式一&#xff1a;使用命令克隆二、方式二&#xff1a;直接复制粘贴 欢迎学习交流&#xff01; 邮箱&#xff1a; z…1…6.com 网站&#xff1a; https://zephyrhours.github.io/ 一、问题描述 使用Anaconda…

【Node-RED 4.0.2】4.0版本新增特性(官方版)

二、重要功能 *1.时间戳格式改进 过去&#xff0c;node-red 只提供了 最原始的 timestamp 的格式&#xff08;1970-01-01 ~ now&#xff09; 但是现在&#xff0c;额外增加了 2 种格式&#xff1a; ISO 8601 -A COMMON FORMAT&#xff08;YYYY-MM-DDTHH:mm:ss:sssZ&#xff…

Cocos制作抖音小游戏接入侧边栏复访接口实例

本篇文章主要讲解&#xff0c;使用cocos接入抖音小游戏侧边栏接口的实例教程。 日期&#xff1a;2024年7月1日 作者&#xff1a;任聪聪 教程实例&#xff1a;https://download.csdn.net/download/hj960511/89509196 下载后可直接导入运行 上传游戏后抖音预审不通过 注意&#x…

如何找BMS算法、BMS软件的实习

之前一直忙&#xff0c;好久没有更新了&#xff0c;今天就来写一篇文章来介绍如何找BMS方向的实习&#xff0c;以及需要具备哪些条件&#xff0c;我的实习经历都是在读研阶段找的&#xff0c;读研期间两段的实习经历再加上最高影响因子9.4分的论文&#xff0c;我的秋招可以说是…

张颂文百花提名,男配界笑出“颂”彩

在这个星光熠熠的百花奖舞台上&#xff0c; 张颂文老师犹如一坛陈年老酒&#xff0c;越品越有味&#xff0c; 竟不声不响地提名了最佳男配角&#xff01;这下可好&#xff0c; 男配界仿佛一夜之间被“颂”风吹得花枝乱颤&#xff0c;笑料百出。你说张颂文老师这演技&#xf…

Linux_fileio实现copy文件

参考韦东山老师教程&#xff1a;https://www.bilibili.com/video/BV1kk4y117Tu?p12 目录 1. 通过read方式copy文件2. 通过mmap映射方式copy文件 1. 通过read方式copy文件 copy文件代码&#xff1a; #include <sys/types.h> #include <sys/stat.h> #include <…

补浏览器环境

一&#xff0c;导言 // global是node中的关键字&#xff08;全局变量&#xff09;&#xff0c;在node中调用其中的元素时&#xff0c;可以直接引用&#xff0c;不用加global前缀&#xff0c;和浏览器中的window类似&#xff1b;在浏览器中可能会使用window前缀&#xff1a;win…

comfyui定制外包

&#x1f308; 最强AI绘画comfyui模型训练、定制服务公司出炉 —— 触站AI&#xff0c;引领设计智能新潮流 &#x1f680; &#x1f3a8; 触站AI&#xff0c;以AI绘画模型训练重塑设计边界 &#x1f3a8;在AI技术的浪潮中&#xff0c;触站AI以其前沿的AI绘画模型训练技术&…

cesium 添加 Echarts图层(人口迁徒图)

cesium 添加 Echarts 人口迁徒图(下面附有源码) 1、实现思路 1、在scene上面新增一个canvas画布 2、通坐标转换,将经纬度坐标转为屏幕坐标来实现 3、将ecarts 中每个series数组中元素都加 coordinateSystem: ‘cesiumEcharts’ 2、示例代码 <!DOCTYPE html> <ht…

java反射和注解

反射 获取class对象的三种方法 ①&#xff1a;Class.forName("全类名"); ②&#xff1a;类名.class ③&#xff1a;对象.getclass(); 代码样例 package com.ithema;public class Main {public static void main(String[] args) throws ClassNotFoundException {//第…