代码随想录算法训练营第60天:动态and[1]

news2024/12/22 11:54:51

代码随想录算法训练营第60天:动态and

72. 编辑距离

力扣题目链接(opens new window)

给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符
  • 示例 1:
  • 输入:word1 = “horse”, word2 = “ros”
  • 输出:3
  • 解释: horse -> rorse (将 ‘h’ 替换为 ‘r’) rorse -> rose (删除 ‘r’) rose -> ros (删除 ‘e’)
  • 示例 2:
  • 输入:word1 = “intention”, word2 = “execution”
  • 输出:5
  • 解释: intention -> inention (删除 ‘t’) inention -> enention (将 ‘i’ 替换为 ‘e’) enention -> exention (将 ‘n’ 替换为 ‘x’) exention -> exection (将 ‘n’ 替换为 ‘c’) exection -> execution (插入 ‘u’)

提示:

  • 0 <= word1.length, word2.length <= 500
  • word1 和 word2 由小写英文字母组成

#算法公开课

《代码随想录》算法视频公开课 ****(opens new window)****​ 动态规划终极绝杀! LeetCode:72.编辑距离 ****(opens new window)****​ ,相信结合视频再看本篇题解,更有助于大家对本题的理解

#思路

编辑距离终于来了,这道题目如果大家没有了解动态规划的话,会感觉超级复杂。

编辑距离是用动规来解决的经典题目,这道题目看上去好像很复杂,但用动规可以很巧妙的算出最少编辑距离。

接下来我依然使用动规五部曲,对本题做一个详细的分析:

#1. 确定dp数组(dp table)以及下标的含义

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

有同学问了,为啥要表示下标i-1为结尾的字符串呢,为啥不表示下标i为结尾的字符串呢?

为什么这么定义我在 718. 最长重复子数组 ​**(opens new window)** 中做了详细的讲解。

其实用i来表示也可以! 用i-1就是为了方便后面dp数组初始化的。

#2. 确定递推公式

在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:

if (word1[i - 1] == word2[j - 1])
不操作
if (word1[i - 1] != word2[j - 1])
增
删
换

也就是如上4种情况。

if (word1[i - 1] == word2[j - 1])​ 那么说明不用任何编辑,dp[i][j]​ 就应该是 dp[i - 1][j - 1]​,即dp[i][j] = dp[i - 1][j - 1];

此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]​呢?

那么就在回顾上面讲过的dp[i][j]​的定义,word1[i - 1]​ 与 word2[j - 1]​相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2​的最近编辑距离dp[i - 1][j - 1]​就是 dp[i][j]​了。

在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]​的定义,就明白了。

在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!

if (word1[i - 1] != word2[j - 1])​,此时就需要编辑了,如何编辑呢?

  • 操作一:word1删除一个元素,那么就是以下标i - 2为结尾的word1 与 j-1为结尾的word2的最近编辑距离 再加上一个操作。

dp[i][j] = dp[i - 1][j] + 1;

  • 操作二:word2删除一个元素,那么就是以下标i - 1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 再加上一个操作。

dp[i][j] = dp[i][j - 1] + 1;

这里有同学发现了,怎么都是删除元素,添加元素去哪了。

word2添加一个元素,相当于word1删除一个元素,例如 word1 = "ad" ,word2 = "a"​,word1​删除元素'd'​ 和 word2​添加一个元素'd'​,变成word1="a", word2="ad"​, 最终的操作数是一样! dp数组如下图所示意的:

            a                         a     d
+-----+-----+             +-----+-----+-----+
|  0  |  1  |             |  0  |  1  |  2  |
+-----+-----+   ===>      +-----+-----+-----+
a |  1  |  0  |           a |  1  |  0  |  1  |
+-----+-----+             +-----+-----+-----+
d |  2  |  1  |
+-----+-----+

操作三:替换元素,word1​替换word1[i - 1]​,使其与word2[j - 1]​相同,此时不用增删加元素。

可以回顾一下,if (word1[i - 1] == word2[j - 1])​的时候我们的操作 是 dp[i][j] = dp[i - 1][j - 1]​ 对吧。

那么只需要一次替换的操作,就可以让 word1[i - 1] 和 word2[j - 1] 相同。

所以 dp[i][j] = dp[i - 1][j - 1] + 1;

综上,当 if (word1[i - 1] != word2[j - 1])​ 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

递归公式代码如下:

if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
}
else {
dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}

#3. dp数组如何初始化

再回顾一下dp[i][j]的定义:

dp[i][j] 表示以下标i-1为结尾的字符串word1,和以下标j-1为结尾的字符串word2,最近编辑距离为dp[i][j]

那么dp[i][0] 和 dp[0][j] 表示什么呢?

dp[i][0] :以下标i-1为结尾的字符串word1,和空字符串word2,最近编辑距离为dp[i][0]。

那么dp[i][0]就应该是i,对word1里的元素全部做删除操作,即:dp[i][0] = i;

同理dp[0][j] = j;

所以C++代码如下:

for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;

#4. 确定遍历顺序

从如下四个递推公式:

  • dp[i][j] = dp[i - 1][j - 1]
  • dp[i][j] = dp[i - 1][j - 1] + 1
  • dp[i][j] = dp[i][j - 1] + 1
  • dp[i][j] = dp[i - 1][j] + 1

可以看出dp[i][j]是依赖左方,上方和左上方元素的,如图:

72.编辑距离

所以在dp矩阵中一定是从左到右从上到下去遍历。

代码如下:

for (int i = 1; i <= word1.size(); i++) {
for (int j = 1; j <= word2.size(); j++) {
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
}
else {
dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}
}
}

#5. 举例推导dp数组

以示例1为例,输入:word1 = "horse", word2 = "ros"​为例,dp矩阵状态图如下:

72.编辑距离1

以上动规五部分析完毕,C++代码如下:

class Solution {
public:
int minDistance(string word1, string word2) {
vector<vector<int>> dp(word1.size() + 1, vector<int>(word2.size() + 1, 0));
for (int i = 0; i <= word1.size(); i++) dp[i][0] = i;
for (int j = 0; j <= word2.size(); j++) dp[0][j] = j;
for (int i = 1; i <= word1.size(); i++) {
for (int j = 1; j <= word2.size(); j++) {
if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
}
else {
dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}
}
}
return dp[word1.size()][word2.size()];
}
};
  • 时间复杂度: O(n * m)
  • 空间复杂度: O(n * m)

动态规划之编辑距离总结篇

本周我们讲了动态规划之终极绝杀:编辑距离,为什么叫做终极绝杀呢?

细心的录友应该知道,我们在前三篇动态规划的文章就一直为 编辑距离 这道题目做铺垫。

#判断子序列

动态规划:392.判断子序列 ​**(opens new window)** 给定字符串 s 和 t ,判断 s 是否为 t 的子序列。

这道题目 其实是可以用双指针或者贪心的的,但是我在开篇的时候就说了这是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。

  • if (s[i - 1] == t[j - 1])

    • t中找到了一个字符在s中也出现了
  • if (s[i - 1] != t[j - 1])

    • 相当于t要删除元素,继续匹配

状态转移方程:

if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
else dp[i][j] = dp[i][j - 1];

#不同的子序列

动态规划:115.不同的子序列 ​**(opens new window)** 给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。

本题虽然也只有删除操作,不用考虑替换增加之类的,但相对于动态规划:392.判断子序列 ​**(opens new window)** 就有难度了,这道题目双指针法可就做不了。

当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。

一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。

一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。

这里可能有同学不明白了,为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊。

例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。

当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。

所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];

当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配,即:dp[i - 1][j]

所以递推公式为:dp[i][j] = dp[i - 1][j];

状态转移方程:

if (s[i - 1] == t[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j];
}

#两个字符串的删除操作

动态规划:583.两个字符串的删除操作 ​**(opens new window)** 给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最少步数,每步可以删除任意一个字符串中的一个字符。

本题和动态规划:115.不同的子序列 ​**(opens new window)** 相比,其实就是两个字符串可以都可以删除了,情况虽说复杂一些,但整体思路是不变的。

  • 当word1[i - 1] 与 word2[j - 1]相同的时候
  • 当word1[i - 1] 与 word2[j - 1]不相同的时候

当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];

当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:

情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1

情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1

情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2

那最后当然是取最小值,所以当word1[i - 1] 与 word2[j - 1]不相同的时候,递推公式:dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

状态转移方程:

if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
} else {
dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});
}

#编辑距离

动态规划:72.编辑距离 ​**(opens new window)** 给你两个单词 word1 和 word2,请你计算出将 word1 转换成 word2 所使用的最少操作数 。

编辑距离终于来了,有了前面三道题目的铺垫,应该有思路了,本题是两个字符串可以增删改,比 动态规划:判断子序列 ​**(opens new window)** ,动态规划:不同的子序列 ​**(opens new window)** ,动态规划:两个字符串的删除操作 ​**(opens new window)** 都要复杂的多。

在确定递推公式的时候,首先要考虑清楚编辑的几种操作,整理如下:

  • if (word1[i - 1] == word2[j - 1])

    • 不操作
  • if (word1[i - 1] != word2[j - 1])

也就是如上四种情况。

if (word1[i - 1] == word2[j - 1]) 那么说明不用任何编辑,dp[i][j] 就应该是 dp[i - 1][j - 1],即dp[i][j] = dp[i - 1][j - 1];

此时可能有同学有点不明白,为啥要即dp[i][j] = dp[i - 1][j - 1]呢?

那么就在回顾上面讲过的dp[i][j]的定义,word1[i - 1] 与 word2[j - 1]相等了,那么就不用编辑了,以下标i-2为结尾的字符串word1和以下标j-2为结尾的字符串word2的最近编辑距离dp[i - 1][j - 1] 就是 dp[i][j]了。

在下面的讲解中,如果哪里看不懂,就回想一下dp[i][j]的定义,就明白了。

在整个动规的过程中,最为关键就是正确理解dp[i][j]的定义!

if (word1[i - 1] != word2[j - 1]),此时就需要编辑了,如何编辑呢?

操作一:word1增加一个元素,使其word1[i - 1]与word2[j - 1]相同,那么就是以下标i-2为结尾的word1 与 i-1为结尾的word2的最近编辑距离 加上一个增加元素的操作。

即 dp[i][j] = dp[i - 1][j] + 1;

操作二:word2添加一个元素,使其word1[i - 1]与word2[j - 1]相同,那么就是以下标i-1为结尾的word1 与 j-2为结尾的word2的最近编辑距离 加上一个增加元素的操作。

即 dp[i][j] = dp[i][j - 1] + 1;

这里有同学发现了,怎么都是添加元素,删除元素去哪了。

word2添加一个元素,相当于word1删除一个元素,例如 word1 = “ad” ,word2 = “a”,word2添加一个元素d,也就是相当于word1删除一个元素d,操作数是一样!

操作三:替换元素,word1替换word1[i - 1],使其与word2[j - 1]相同,此时不用增加元素,那么以下标i-2为结尾的word1 与 j-2为结尾的word2的最近编辑距离 加上一个替换元素的操作。

即 dp[i][j] = dp[i - 1][j - 1] + 1;

综上,当 if (word1[i - 1] != word2[j - 1]) 时取最小的,即:dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;

递归公式代码如下:

if (word1[i - 1] == word2[j - 1]) {
dp[i][j] = dp[i - 1][j - 1];
}
else {
dp[i][j] = min({dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]}) + 1;
}

#总结

心思的录友应该会发现我用了三道题做铺垫,才最后引出了动态规划:72.编辑距离 ​**(opens new window)** ,Carl的良苦用心呀,你们体会到了嘛!

647. 回文子串

力扣题目链接(opens new window)

给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:

  • 输入:“abc”
  • 输出:3
  • 解释:三个回文子串: “a”, “b”, “c”

示例 2:

  • 输入:“aaa”
  • 输出:6
  • 解释:6个回文子串: “a”, “a”, “a”, “aa”, “aa”, “aaa”

提示:输入的字符串长度不会超过 1000 。

#算法公开课

《代码随想录》算法视频公开课 ****(opens new window)****​ 动态规划,字符串性质决定了DP数组的定义 | LeetCode:647.回文子串 ****(opens new window)****​ ,相信结合视频在看本篇题解,更有助于大家对本题的理解

#思路

#暴力解法

两层for循环,遍历区间起始位置和终止位置,然后还需要一层遍历判断这个区间是不是回文。所以时间复杂度:O(n^3)

#动态规划

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

如果大家做了很多这种子序列相关的题目,在定义dp数组的时候 很自然就会想题目求什么,我们就如何定义dp数组。

绝大多数题目确实是这样,不过本题如果我们定义,dp[i] 为 下标i结尾的字符串有 dp[i]个回文串的话,我们会发现很难找到递归关系。

dp[i] 和 dp[i-1] ,dp[i + 1] 看上去都没啥关系。

所以我们要看回文串的性质。 如图:

我们在判断字符串S是否是回文,那么如果我们知道 s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。

那么此时我们是不是能找到一种递归关系,也就是判断一个子字符串(字符串的下表范围[i,j])是否回文,依赖于,子字符串(下表范围[i + 1, j - 1])) 是否是回文。

所以为了明确这种递归关系,我们的dp数组是要定义成一位二维dp数组。

布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

  1. 确定递推公式

在确定递推公式时,就要分析如下几种情况。

整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。

当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。

当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

  • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
  • 情况二:下标i 与 j相差为1,例如aa,也是回文子串
  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。

以上三种情况分析完了,那么递归公式如下:

if (s[i] == s[j]) {
if (j - i <= 1) { // 情况一 和 情况二
result++;
dp[i][j] = true;
} else if (dp[i + 1][j - 1]) { // 情况三
result++;
dp[i][j] = true;
}
}

result就是统计回文子串的数量。

注意这里我没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。

  1. dp数组如何初始化

dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。

所以dp[i][j]初始化为false。

  1. 确定遍历顺序

遍历顺序可有有点讲究了。

首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。

dp[i + 1][j - 1] 在 dp[i][j]的左下角,如图:

647.回文子串

如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。

所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的

有的代码实现是优先遍历列,然后遍历行,其实也是一个道理,都是为了保证dp[i + 1][j - 1]都是经过计算的。

代码如下:

for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序
for (int j = i; j < s.size(); j++) {
if (s[i] == s[j]) {
if (j - i <= 1) { // 情况一 和 情况二
result++;
dp[i][j] = true;
} else if (dp[i + 1][j - 1]) { // 情况三
result++;
dp[i][j] = true;
}
}
}
}
  1. 举例推导dp数组

举例,输入:“aaa”,dp[i][j]状态如下:

647.回文子串1

图中有6个true,所以就是有6个回文子串。

注意因为dp[i][j]的定义,所以j一定是大于等于i的,那么在填充dp[i][j]的时候一定是只填充右上半部分

以上分析完毕,C++代码如下:

class Solution {
public:
int countSubstrings(string s) {
vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));
int result = 0;
for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序
for (int j = i; j < s.size(); j++) {
if (s[i] == s[j]) {
if (j - i <= 1) { // 情况一 和 情况二
result++;
dp[i][j] = true;
} else if (dp[i + 1][j - 1]) { // 情况三
result++;
dp[i][j] = true;
}
}
}
}
return result;
}
};

以上代码是为了凸显情况一二三,当然是可以简洁一下的,如下:

class Solution {
public:
int countSubstrings(string s) {
vector<vector<bool>> dp(s.size(), vector<bool>(s.size(), false));
int result = 0;
for (int i = s.size() - 1; i >= 0; i--) {
for (int j = i; j < s.size(); j++) {
if (s[i] == s[j] && (j - i <= 1 || dp[i + 1][j - 1])) {
result++;
dp[i][j] = true;
}
}
}
return result;
}
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n^2)

#双指针法

动态规划的空间复杂度是偏高的,我们再看一下双指针法。

首先确定回文串,就是找中心然后向两边扩散看是不是对称的就可以了。

在遍历中心点的时候,要注意中心点有两种情况

一个元素可以作为中心点,两个元素也可以作为中心点。

那么有人同学问了,三个元素还可以做中心点呢。其实三个元素就可以由一个元素左右添加元素得到,四个元素则可以由两个元素左右添加元素得到。

所以我们在计算的时候,要注意一个元素为中心点和两个元素为中心点的情况。

这两种情况可以放在一起计算,但分别计算思路更清晰,我倾向于分别计算,代码如下:

class Solution {
public:
int countSubstrings(string s) {
int result = 0;
for (int i = 0; i < s.size(); i++) {
result += extend(s, i, i, s.size()); // 以i为中心
result += extend(s, i, i + 1, s.size()); // 以i和i+1为中心
}
return result;
}
int extend(const string& s, int i, int j, int n) {
int res = 0;
while (i >= 0 && j < n && s[i] == s[j]) {
i--;
j++;
res++;
}
return res;
}
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

516.最长回文子序列

力扣题目链接(opens new window)

给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。

示例 1: 输入: “bbbab” 输出: 4 一个可能的最长回文子序列为 “bbbb”。

示例 2: 输入:“cbbd” 输出: 2 一个可能的最长回文子序列为 “bb”。

提示:

  • 1 <= s.length <= 1000
  • s 只包含小写英文字母

#算法公开课

《代码随想录》算法视频公开课 ****(opens new window)****​ 动态规划再显神通,LeetCode:516.最长回文子序列 ****(opens new window)****​ ,相信结合视频再看本篇题解,更有助于大家对本题的理解

#思路

我们刚刚做过了 动态规划:回文子串 ​**(opens new window)** ,求的是回文子串,而本题要求的是回文子序列, 要搞清楚这两者之间的区别。

回文子串是要连续的,回文子序列可不是连续的! 回文子串,回文子序列都是动态规划经典题目。

回文子串,可以做这两题:

  • 647.回文子串
  • 5.最长回文子串

思路其实是差不多的,但本题要比求回文子串简单一点,因为情况少了一点。

动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]

  1. 确定递推公式

在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。

如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;

如图: 516.最长回文子序列

(如果这里看不懂,回忆一下dp[i][j]的定义)

如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

加入s[j]的回文子序列长度为dp[i + 1][j]。

加入s[i]的回文子序列长度为dp[i][j - 1]。

那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

516.最长回文子序列1

代码如下:

if (s[i] == s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
  1. dp数组如何初始化

首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。

所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。

其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。

vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
  1. 确定遍历顺序

从递归公式中,可以看出,dp[i][j] 依赖于 dp[i + 1][j - 1] ,dp[i + 1][j] 和 dp[i][j - 1],如图:

所以遍历i的时候一定要从下到上遍历,这样才能保证下一行的数据是经过计算的

j的话,可以正常从左向右遍历。

代码如下:

for (int i = s.size() - 1; i >= 0; i--) {
for (int j = i + 1; j < s.size(); j++) {
if (s[i] == s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
  1. 举例推导dp数组

输入s:“cbbd” 为例,dp数组状态如图:

516.最长回文子序列3

红色框即:dp[0][s.size() - 1]; 为最终结果。

以上分析完毕,C++代码如下:

class Solution {
public:
int longestPalindromeSubseq(string s) {
vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
for (int i = 0; i < s.size(); i++) dp[i][i] = 1;
for (int i = s.size() - 1; i >= 0; i--) {
for (int j = i + 1; j < s.size(); j++) {
if (s[i] == s[j]) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][s.size() - 1];
}
};
  • 时间复杂度: O(n^2)
  • 空间复杂度: O(n^2)

#其他语言版本

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1885314.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

我使用 GPT-4o 帮我挑西瓜

在 5 月 15 日&#xff0c;OpenAI 旗下的大模型 GPT-4o 已经发布&#xff0c;那时网络上已经传开&#xff0c; 但很多小伙伴始终没有看到 GPT-4o 的体验选项。 在周五的时候&#xff0c;我组建的 ChatGPT 交流群的伙伴已经发现了 GPT-4o 这个选项了&#xff0c;是在没有充值升…

elementUI 年份范围选择器实现

elementUI 不支持年份范围的选择器&#xff0c;依照下面的文章进行修改和完善 el-year-picker&#xff1b; element日期选择范围、选择年份范围_elemet 两个日期 选择的年份范围必须在三年之内-CSDN博客 el-year-picker 组件&#xff1a; 依赖包&#xff1a;moment 属性&…

JavaSE--基础语法--类和对象(第二期)

&#xff08;一&#xff09;.面向对象的初步认知 1.1什么是面向对象&#xff1f; Java是一门纯面向对象的语言(Object Oriented Program&#xff0c;简称OOP)&#xff0c;在面向对象的世界里&#xff0c;一切皆为对象。面向对象是解决问题的一种思想&#xff0c;主要依靠对象…

怎么测试远程服务器能否连通

远程服务器连接测试的方法很多&#xff0c;下面简单介绍下其中两种方法。 ping命令 按WINR快截键&#xff0c;打开“运行”对话框&#xff0c;输入cmd&#xff0c;回车&#xff0c;打开命令提示符。 输入ping IP地址或ping 域名即可&#xff0c;如ping360服务器通不通&#xf…

DB-100撕裂开关 JOSEF约瑟 合金接线端子,轻松接线

一、产品概述 型号&#xff1a;DB-100 主要用途&#xff1a;DB-100撕裂开关主要用于监测皮带输送机在运行过程中是否发生纵向撕裂&#xff0c;一旦发现撕裂情况&#xff0c;立即触发报警或停机&#xff0c;以保护设备和生产线的安全运行。 二、技术特点 检测原理&#xff1a;…

国产跨平台高性能远程控制软件 RayLink,畅享高清流畅远程办公

不管是手机还是电脑&#xff0c;出色的硬件是好用的基础。而其中的软件工具&#xff0c;也是提高效率、减轻负担的好东西。 免费的软件工具众多&#xff0c;当然付费工具也不少。大家可能会觉得正版软件很贵&#xff0c;但国内软件代理商的价格其实很实惠。 本次为大家介绍一…

Tele-FLM:开源多语言大型语言模型技术报告

随着模型规模的不断扩大&#xff0c;如何高效地训练并优化这些拥有超过500亿参数的庞大模型&#xff0c;同时降低试错成本和计算资源消耗&#xff0c;成为了一个亟待解决的问题。北京智源人工智能研究院、中国电信的研究团队及其合作者提出Tele-FLM模型&#xff1a;一个52亿参数…

刷代码随想录有感(123):动态规划——最长连续递增子序列

题干&#xff1a; 代码&#xff1a; class Solution { public:int findLengthOfLCIS(vector<int>& nums) {if(nums.size() < 1)return nums.size();vector<int>dp(nums.size(), 1);int res 0;for(int i 1; i < nums.size(); i){if(nums[i] > nums[…

C# Web控件与数据感应之属性统一设置

目录 关于属性统一设置 准备数据源 范例运行环境 AttributeInducingFieldName 方法 设计与实现 如何根据 ID 查找控件 FindControlEx 方法 调用示例 小结 关于属性统一设置 数据感应也即数据捆绑&#xff0c;是一种动态的&#xff0c;Web控件与数据源之间的交互&…

NoSQL之Redis优化

目录 一、Redis 高可用 二、Redis 持久化 1.RDB 持久化 1&#xff09;触发条件 2&#xff09; 执行流程 3&#xff09;启动时加载 2.AOF 持久化 1&#xff09;开启AOF 2&#xff09;执行流程 3&#xff09;启动时加载 3.RDB和AOF的优缺点 三、Redis 性能管理 1.查…

11.优化算法之栈

1.删除字符串中的所有相邻重复项 可以用数组模拟栈结构 class Solution {public String removeDuplicates(String s) {if(s.length()<1){return s;}StringBuffer retnew StringBuffer();for(int i0;i<s.length();i){if(ret.length()<1){ret.append(s.charAt(i));}els…

Django + Vue 实现图片上传功能的全流程配置与详细操作指南

文章目录 前言图片上传步骤1. urls 配置2. settings 配置3. models 配置4. 安装Pillow 前言 在现代Web应用中&#xff0c;图片上传是一个常见且重要的功能。Django作为强大的Python Web框架&#xff0c;结合Vue.js这样的现代前端框架&#xff0c;能够高效地实现这一功能。本文将…

校园兼职小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;商家管理&#xff0c;管理员管理&#xff0c;用户管理&#xff0c;兼职管理&#xff0c;论坛管理&#xff0c;公告管理 微信端账号功能包括&#xff1a;系统首页&#xff0c;公告&#xff0c;兼职&…

应急响应:应急响应流程,常见应急事件及处置思路

「作者简介」&#xff1a;冬奥会网络安全中国代表队&#xff0c;CSDN Top100&#xff0c;就职奇安信多年&#xff0c;以实战工作为基础著作 《网络安全自学教程》&#xff0c;适合基础薄弱的同学系统化的学习网络安全&#xff0c;用最短的时间掌握最核心的技术。 这一章节我们需…

单片机软件架构连载(2)-指针

我工作了10年&#xff0c;大大小小做过几十个项目&#xff0c;用指针解决过很多实际产品的痛点&#xff0c;比如写过小系统&#xff0c;数据结构(队列&#xff0c;链表)&#xff0c;模块化编程等等..... 今天贴近实际&#xff0c;给大家总结了c语言指针常用的知识点&#xff0c…

C++封装

1. 封装 1.1. struct 当单一变量无法完成描述需求的时候&#xff0c;结构体类型解决了这一问题。可以将多个类型打包成一体&#xff0c;形成新的类型&#xff0c;这是c语言中的封装 但是&#xff0c;新类型并不包含&#xff0c;对数据类的操作。所有操作都是通过函数的方式进…

python-糖果俱乐部(赛氪OJ)

[题目描述] 为了庆祝“华为杯”的举办&#xff0c;校园中开展了许多有趣的热身小活动。小理听到这个消息非常激动&#xff0c;他赶忙去参加了糖果俱乐部的活动。 该活动的规则是这样的&#xff1a;摊位上有 n 堆糖果&#xff0c;第 i 堆糖果有 ai​ 个&#xff0c;参与的同学可…

从入门到深入,Docker新手学习教程

编译整理&#xff5c;TesterHome社区 作者&#xff5c;Ishaan Gupta 以下为作者观点&#xff1a; Docker 彻底改变了我们开发、交付和运行应用程序的方式。它使开发人员能够将应用程序打包到容器中 - 标准化的可执行组件&#xff0c;将应用程序源代码与在任何环境中运行该代码…

YOLOv10改进教程|C2f-CIB加入注意力机制

一、 导读 论文链接&#xff1a;https://arxiv.org/abs/2311.11587 代码链接&#xff1a;GitHub - CV-ZhangXin/AKConv YOLOv10训练、验证及推理教程 二、 C2f-CIB加入注意力机制 2.1 复制代码 打开ultralytics->nn->modules->block.py文件&#xff0c;复制SE注意力机…

快排的实现

引言 作为c语言库函数的一种&#xff0c;快排在排序中的地位毋庸置疑. 而更加具体的实现如图&#xff1a; 快排的实现&#xff08;递归实现&#xff09; 原理 单趟:先假定第一个数设为key,如果左边指针的值比key大&#xff0c;且右边指针的值比key小&#xff0c;则将其交换.…