MySQL之应用层优化(二)

news2024/12/25 10:03:19

应用层优化

Web服务器问题

寻找最优并发度

每个Web服务器都有一个最佳并发度——就是说,让进程处理请求尽可能快,并且不超过系统负载的最优的并发连接数。这就是前面说的最大系统容量。进行一个简单的测量和建模,或者只是反复试验,就可以找到这个"神奇的数",为此花一些时间是值得的。
对于大流量的网站,Web服务器同一时刻处理上千个连接是很常见的。然而,只有一小部分连接需要进程实时处理。其他的可能是读请求,处理文件上传,填鸭式服务内容,或者只是等待客户端的下一步请求。随者并发的增加,服务器会逐渐到达它的最大吞吐量。在这之后,吞吐量通常开始降低,更重要的是,响应时间(延迟)也会i那位排队而开始增加。为什么会这样呢?试想,如果服务器只有一个CPU,同时接受到100个请求,,会发生什么事情呢?j假设CPU每秒能够处理一个请求。即便理想情况下操作系统没有调度的开销,也没有上下文切换的成本,那100个请求也需要CPU花费整整100s才能完成。
处理请求i的最好办法是什么?可以将其一个个地排到队列中,也可以并行地执行在不同请求之间切换,每次切换都给每个请求相同的服务时间。在这两种情况下,吞吐量都是每秒处理一个请求。然而,如果使用队列(并发=1),平均延时是50s,如果是并发执行(并发=100)则是100s。在实践中,并发执行会使平均延时更高,主要是因为上下文切换的代价。
对于CPU密集型工作负载,最佳并发度等于CPU数量(或者CPU核数)。然而,进程并不总是处于可运行状态的,因为会有一些阻塞式请求,例如IO、数据库查询,以及网络请求。因此,最佳并发度通常会比CPU数量高一些。
可以预测最优并发度,但是这需要精确的分析。尝试不同的并发值,看看在不增加响应时间的情况下的最大吞吐量是多少,或者测量真正的工作负载进行分析,这通常更容易。Percona Toolkit的pt-tcp-model工具可以帮助从TCP转储中测量和建模分析系统的可扩展性和性能特性。

缓存

缓存对高负载应用来说至关重要。一个典型的Web应用程序会提高大量的内容,直接生成这些内容的成本比采用缓存要高得多(包括检查和缓存超时的开销),所以采用缓存通常可以获得数量级的性能提升。诀窍是找到正确的粒度和缓存过期策略组合。另外也需要决定哪些内容适合缓存,缓存在哪里。
典型的高负载应用会有很多层缓存。缓存并不仅仅发生在服务器上,而是在每一个环节,甚至包括用户的Web浏览器(这就是内容过期头的用处)。通常,缓存越接近客户端,就越节省资源并且效率更高。从浏览器缓存提供一张图片比从Web服务器的内容获取快得多,而从服务器的内存读取又比从服务器的磁盘上读取好得多。每种类型的缓存有其不一样的特点,例如容量和延时。
可以把缓存分成两大类:被动缓存和主动缓存。被动缓存除了存储和返回数据外不做任何事情。当从被动缓存请求一些内容时,要么可以得到结果,要么得到"结果不存在"。被动缓存的一个典型例子时memcached.相比之下,主动缓存会在访问未命中时做一些额外的工作。通常会将请求转发给应用的其他部分来生成请求结果,然后存储该结果并返回给应用。Squid缓存代理服务器就是一个主动缓存。设计应用程序时,通常希望缓存是主动的(也可以叫做透明的),因为它们对应用隐藏了检查——生成——存储这个逻辑过程。也可以在被动缓存的前面构建一个主动缓存。

应用层以下的缓存

MySQL服务器有自己的内部缓存,但也可以构建你自己的缓存和汇总表。可以对缓存表量身定制,使他们最有效地过滤、排序、与其它表关联、计数,或者用于其他用途。缓存表也比许多应用层缓存更持久,因为在服务器重启后它们还存在。

缓存并不总是有用。
必需确认缓存真的可以提升性能,因为有时候缓存可能没有任何帮助。例如,在实践中发现从Nginx的内存中获取内容比从缓存中代理中获取要快,如果代理的缓存在磁盘上则尤其如此.
原因很简单:缓存自身也有一些开销。比如检查缓存是否存在,如果命中则直接从缓存中返回数据。另外将缓存对象失效或者写入新的缓存对象都会有开销。缓存只在这些开销比没有缓存的情况下生成和提供数据的开销少时才有用。如果直到所有这些操作的开销,就可以计算出缓存能提供多少帮助。没有缓存时的开销就是每个请求生成数据的开销。有缓存的开销是检查缓存的开销加上缓存不命中的概率乘以生成数据的开销,再加上缓存命中的概率乘以缓存提供数据的开销。如果有缓存时的开销比没有时要低,则说明缓存可能有用,但依然不能保证。还要记住,就像从Nginx的内存中获取数据比从代理在磁盘中的缓存获取要好一样,有些缓存的开销比另外一些要低

应用层缓存

应用层缓存通常在同一台机器的内存中存储数据,或者通过网络存在另一台机器的内存中。因为应用可以缓存部分计算结果,所以应用缓存可能比更低层次的缓存更有效。因此应用层缓存可以节省两方面的工作:获取数据以及基于这些数据进行计算。一个很好的例子是HTML文本块。应用程序可以生成例如头条新闻的标题这样的HTML片段,并且做好缓存。后续的页面试图就可以简单地插入这个缓存过的文本。一般来说,在缓存数据前对数据做的处理越多,缓存命中节省的工作越多。
但应用层缓存也有缺点,那就是缓存命中率可能更低,并且可能使用较多的内存。假设需要50个不同版本的头条新闻标题,以使不同地区生活的用户看到不同的内容,那就需要足够的内存去存储全部50个版本,任何给定版本的标题命中次数都会更少,并且失效策略也会更加复杂。
应用缓存有许多种,下面是其中的一小部分:

1.本地缓存

这种缓存通常很小,只在进程处理请求期间存在于进程内存中。本地缓存可以有效地避免对某些资源的重复请求。这种类型的缓存技术并不复杂:通常只是应用代码中的一个变量或者哈希表。这种类型的缓存技术并不复杂:通常只是应用代码中的一个变量或者哈希表。例如,假设需要显式一个用户名,而且已经直到其ID,就可以创建一个get_name_from_id()函数并且在其中增加缓存。像下面这样:
在这里插入图片描述
在这里插入图片描述

<?php
function get_name_from_id($user_id) {
static $name; // static makes the variable persist
if (!$name) {
// fetch name from database
}

return $name;

}
?>

如果使用的是Perl,那么Memoize模块是函数调用结果标准的缓存方式:

use Memoize qw(memoize);
memoize 'get_name_from_id';
sub get_name_from_id {
my ($user_id) = @_;
my $name = # get name from database
return $name;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1884941.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SpringBoot创建一个初始化项目

提示&#xff1a;这一篇文章&#xff0c;主要是为了之后可以快速的去搭建项目&#xff0c;当然这篇博客&#xff0c;作者也会根据以后学习到的东西&#xff0c;慢慢去整理 文章目录 前言 搭建一个SpringBoot项目&#xff0c;目的是为了快速开发项目 项目列表 响应枚举类 /***…

今日早报 每日精选15条新闻简报 每天一分钟 知晓天下事 7月2日,星期二

每天一分钟&#xff0c;知晓天下事&#xff01; 2024年7月2日 星期二 农历五月廿七 1、 中指研究院&#xff1a;业主“以价换量”促交易特征明显&#xff0c;6月百城二手住宅价格继续下行。 2、 多家银行宣布&#xff01;停止手机银行ATM扫码取款服务&#xff0c;“安全”成为…

本地文本向量模型的部署提供兼容openai的接口

前言 之前部署了fastgpt官方文档的一个,提供的一个m3e-large的向量模型打包的docker镜像,虽然使用起来整体效果还可以,但是有些文本向量相似度匹配的结果还是不太满意的,目前,网络上层出不穷的带推理文本向量,想体验一下,于是我基于modelscope库封装了一个兼容open ai的…

11集在Docker上编译tensorFlow Lite MCU例子工程-《MCU嵌入式AI开发笔记》

【11集在Docker上编译tensorFlow Lite MCU例子工程-《MCU嵌入式AI开发笔记》】 这一集咱们一步一步的在doc下面编译TensorFlow Lite的例程 https://tensorflow.google.cn/lite/tutorials?hlzh-cn 进入这个例子&#xff1a; https://codelabs.developers.google.cn/codelabs/…

Hi3861 OpenHarmony嵌入式应用入门--wifi sta

鸿蒙WiFi STA模式相关的API接口文件路径 foundation/communication/interfaces/kits/wifi_lite/wifiservice/wifi_device.h 所使用的API接口有&#xff1a; API 接口说明 WifiErrorCode EnableWifi(void); 开启STA WifiErrorCode DisableWifi(void); 关闭STA int IsWif…

20240701给NanoPi R6C开发板编译友善之臂的Android12系统

20240701给NanoPi R6C开发板编译友善之臂的Android12系统 2024/7/1 14:19 本文采取这个模式编译&#xff1a;11.6.3 编译Android Tablet版本(首次编译) echo "ROCKCHIP_DEVICE_DIR : device/rockchip/rk3588/nanopi6" > .rockchip_device.mk # export INSTALL_GAP…

LangChain 开发智能Agent,你学会了吗?

Prompt Enginnering 是打开LLM宝库的一把金钥匙&#xff0c;如果prompt得法&#xff0c;并能将其技巧与某项工作深度结合&#xff0c;那必将大大增效。今天我们来聊聊如何优化Prompt设计、Prompt Template管理等技术和体力活&#xff0c;并赋能老喻干货店的营销活动。 LLM Pro…

ollama open-webui安装后报错401

查看日志 docker logs open-webui "GET /ollama/api/tags HTTP/1.1" 500 Internal Server Error "GET /ollama/api/version HTTP/1.1" 500 Internal Server Error "GET /openai/api/models HTTP/1.1" 401 Unauthorized 浏览器console报错

提升ChatGLM效能:仅需简单模型调整

本文作者&#xff1a; 赵桢、罗成、李亭骞、邹文艺 引言 自大语言模型 (LLM) 成为热点话题以来&#xff0c;涌现了一大批中文大语言模型并在优化平台中得到了积极部署。ChatGLM 正是广受好评的主流中文大语言模型之一。 然而&#xff0c;由于 ChatGLM 模型尚未成为 Transfo…

Echarts 问题集锦

最近公司集中做统计图表&#xff0c;新手小白&#xff0c;真被Echarts折腾地不轻&#xff0c;怕自己年老记忆衰退&#xff0c;特地做一些记录。以备后面查阅。 1、X轴的 数据显示不全&#xff0c;间或不显示 很奇葩&#xff0c;我发现数据里有一个值为0.0&#xff0c;当这条记…

Windows 解决文件包含病毒或潜在的垃圾软件

注意确保软件没问题&#xff0c;保护个人数据隐私 问题描述 解决步骤

科普文:一文搞懂jvm原理(三)执行引擎之垃圾回收器

概叙 科普文&#xff1a;一文搞懂jvm(一)jvm概叙-CSDN博客 科普文&#xff1a;一文搞懂jvm原理(二)类加载器-CSDN博客 科普文&#xff1a;一文搞懂jvm原理(三)执行引擎-CSDN博客 科普文&#xff1a;一文搞懂jvm原理(四)运行时数据区-CSDN博客 前面我们介绍了jvm&#xff0c…

基于java+springboot+vue实现的电影院购票系统(文末源码+Lw)274

摘 要 传统办法管理信息首先需要花费的时间比较多&#xff0c;其次数据出错率比较高&#xff0c;而且对错误的数据进行更改也比较困难&#xff0c;最后&#xff0c;检索数据费事费力。因此&#xff0c;在计算机上安装电影院购票系统软件来发挥其高效地信息处理的作用&#xf…

Flink 容错机制

一致性检查点&#xff08;checkpoint&#xff09; 什么是 Checkpoint &#xff1f; Flink 故障恢复机制的核心&#xff0c;就就是应用状态的一致性检查点&#xff1b;有状态流应用的一直检查点&#xff0c;其实就是所有任务的状态&#xff0c;在某一时间点的一份拷贝&#xff…

月之暗面kimi底层推理系统原理

太长不看版&#xff08;作者大佬自己的在知乎碎碎念&#xff09;&#xff1a; 本论文与很多 Prefill/Decoding 分离的论文不同的是&#xff0c;这套方案已经在大规模集群上进行几个月的验证并证明了方案的有效性。目前这套系统承载了 Kimi 线上80% 以上的流量&#xff0c; 效果…

(18)GPS/指南针(一)

文章目录 前言 1 GPS/指南针 2 RTK GPS 3 GPS驱动程序选项 4 GPS自动切换 5 高级用途 前言 Copter/Plane/Rover 支持与 GPS、指南针和其他定位技术的整合&#xff1a; 1 GPS/指南针 Avionics Anonymous GNSS CompassAvionics Anonymous CompassBeitain BN-220 GPS / B…

《梦醒蝶飞:释放Excel函数与公式的力量》8.1 COUNT函数

8.1 COUNT函数 在Excel中&#xff0c;COUNT函数及其相关变体用于统计单元格中的数据量。它们能够帮助我们快速统计数据的数量&#xff0c;常用于数据分析和报表制作。 8.1.1 函数简介 COUNT函数用于统计指定区域内的数值单元格数量。它只统计数值&#xff0c;不包括文本或空…

XD3C03P1G、XD3C01N3F比例方向控制阀放大板

XD3A01N2G、XD3A03N2G、XD3C03N1F、XD3C03P1G、XD3C01N3F、XD3C03N2F、XD3C01P4G、XD3C03P3G、XD3C03N2F、XD3C03N2G、XDP3A01P1F、XDP3C03N2G、XDP3A03P3G、XDP3C01NAF、XDP3C03P6G、XDP3A03PAG、XDP3A03N3F液压比例方向阀是液压系统中的关键元件&#xff0c;用于实现对流量、…

二叉树的右视图-二叉树

199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 层序遍历&#xff0c;广度优先 queue先进后出&#xff0c;每层从左往右进树&#xff0c;最后一个就是最右边的数&#xff1b;pop掉这层的。push下一层&#xff1b; class Solution { public:vector<int> r…

考研生活day2--王道课后习题2.3.1、2.3.2、2.3.3

2.3.1 题目描述&#xff1a; 这题和曾经做过的LeetCode203.移除元素一模一样&#xff0c;所以我们就使用LeetCode进行书写&#xff0c;题目链接203. 移除链表元素 - 力扣&#xff08;LeetCode&#xff09; 解题思路 大家的第一反应肯定是根据书上所学的书写方法一样书写&…