python 笔试面试八股(自用版~)

news2025/1/24 2:28:04

1 解释型和编译型语言的区别

解释是翻译一句执行一句,更灵活,eg:python; 解释成机器能理解的指令,而不是二进制码
编译是整个源程序编译成机器可以直接执行的二进制可运行的程序,再运行这个程序 比如c++

2 简述下 Python 中的字符串、列表、元组和字典和集合

在 Python 中,字符串、列表、元组、字典和集合是常用的数据结构,每种结构都有其独特的特性和用途。

  1. 字符串 (String): ’ ’ " "

    • 字符串是由字符组成的序列。在 Python 中,字符串是不可变的,这意味着一旦创建了一个字符串,就不能修改它。
    • 字符串可以用单引号 (' ') 或双引号 (" ") 包围。
    • 示例: 'hello'"world"
  2. 列表 (List): [ ]

    • 列表是一个有序的元素集合,元素可以是任意类型(整数、浮点数、字符串、另一个列表等)。
    • 列表是可变的,可以添加、删除或修改其中的元素。
    • 列表使用方括号 ([ ]) 创建。
    • 示例: [1, 2, 3, 'apple', [4, 5]]
  3. 元组 (Tuple): ()

    • 元组与列表类似,也是一个有序的元素集合,但元组是不可变的。
    • 元组使用圆括号 (( )) 创建,但空元组可以用单独的一个逗号创建,如 t = ()t = ,
    • 由于元组不可变,它们在某些情况下比列表更高效。
    • 示例: (1, 2, 3, 'banana')
  4. 字典 (Dictionary): {}

    • 字典是一个无序的键值对集合。每个键在字典中都是唯一的,并与一个值相关联。
    • 字典使用大括号 ({ }) 创建,键和值之间用冒号 (:) 分隔。
    • 字典是可变的,可以增加、删除或修改键值对。
    • 示例: {'name': 'Alice', 'age': 30}
  5. 集合 (Set): {}

    • 集合是一个无序的、不重复的元素集合。
    • 集合使用大括号 ({ }) 创建,但注意,空集合必须使用 set() 函数创建,而不是 {}(这会创建一个空字典)。
    • 集合支持数学运算,如并集、交集、差集等。
    • 示例: {1, 2, 3, 4, 5}

有序:元组 列表
唯一的:集合、字典
不可变:元组

3 简述上述数据类型的常用方法

  • 字符串:
    切片:[1:3]
    格式化:print(“Hello, {}! Today is {}.”.format(“Alice”, “Monday”))
    连接 a.join(b)
    替换 ‘ddd’.repalce(‘d’,‘a’)
    分割 .split(',') #用逗号分割
  • 列表

切片
添加元素 .append() .extend()
删除

del list[0] #下标
list. pop() # 最后一个元素
list.remove('c') # 元素

排序 sort
反转 reverse

  • 字典
    清空 .clear()
    遍历 key for key in dict
    新建 .formkeys(keyname, valuves)

4 简述 Python 中的字符串编码

UTF-8 是隶属于 Unicode 的可变长的编码方式。

在 Python 中,以 Unicode 方式编码的字符串,可以使用 encode() 方法来编码成指定的 bytes,也可以通过 decode()方法来把 bytes编码成字符串。

>>> "你好".encode('utf-8')
b'\xe4\xbd\xa0\xe5\xa5\xbd'
>>> b'\xe4\xb8\xad\xe6\x96\x87'.decode('utf-8')
"你好"

5 一行代码实现数值交换

a, b = b, a

6 is 和 == 的区别

is是判断对象的id内存地址是否一致,==判断值
可以理解为 是 和 等于 的区别

7 Python 函数中的参数类型

Python 函数的参数类型可以分为几种,包括:

  1. 位置参数(Positional Arguments)

    • 这些参数必须按顺序提供,并且不能使用参数名来指定。
  2. 默认参数(Default Arguments)

    • 函数定义时,可以为参数指定默认值。如果没有为这些参数提供值,则使用默认值。
  3. 关键字参数(Keyword Arguments)

    • 这些参数在调用函数时使用参数名指定,这允许以任何顺序传递参数。
  4. 可变位置参数(Variable Positional Arguments):变的是数量

    • 使用*表示,可以接收任意数量的位置参数,这些参数被存储在元组中。
  5. 可变关键字参数(Variable Keyword Arguments)

    • 使用**表示,可以接收任意数量的关键字参数,这些参数被存储在字典中。
  6. 类型注解(Type Hints)

    • Python 3.5+ 引入了类型注解,允许开发者指定参数预期的数据类型,但这不会对类型进行检查,只是作为提示。

下面是一些示例来说明这些参数类型:


# 类型注解
def calculate(a: int, b: int, operator: str) -> int:
    if operator == '+':
        return a + b
    elif operator == '-':
        return a - b

result = calculate(5, 3, '+')

在实际编程中,使用默认参数和可变参数可以增加函数的灵活性。关键字参数和类型注解则可以提高代码的可读性和可维护性。类型注解在现代Python开发中越来越受欢迎,尤其是在大型项目和团队协作中,它们帮助工具和IDE进行类型检查,从而减少错误。

8 *arg 和 **kwarg 作用

可变位置和可变关键字,只数量可变。*arg 会把位置参数转化为 tuple,**kwarg 会把关键字参数转化为 dict。

>>> def test(*arg, **kwarg):
...     if arg:
...         print("arg:", arg)
...     if kwarg:
...         print("kearg:", kwarg)
...
>>> test('ni', 'hao', key='world')
arg: ('ni', 'hao')
kearg: {'key': 'world'}

9 获取当前时间

>>> import time
>>> import datetime
>>> print(datetime.datetime.now())
2022-09-12 19:51:24.314335
>>> print(time.strftime('%Y-%m-%d %H:%M:%S'))
2022-09-12 19:51:24

10 PEP8 规范

PEP 8 是 Python 的官方编码风格指南,它提供了关于如何编写清晰、可读性强的 Python 代码的指导。以下是 PEP 8 中一些关键的规范:

  1. 缩进:4

    • 使用 4 个空格进行缩进。
  2. 行宽

    • 每行代码尽量不超过 79 个字符,这样可以在不同的设备上查看代码时不需要水平滚动。
  3. 空行:2

    • 在函数定义之间使用两个空行。
    • 在类定义之间也使用两个空行,但在类的方法定义之间使用一个空行。
  4. 导入:1

    • 每个导入应该独占一行。
    • 应该将 import 分为三部分:标准库导入、相关第三方导入、本地应用/库特定导入。
  5. 变量命名:小下划,大是类

    • 使用小写字母和下划线分隔的方式命名变量和函数(snake_case)。
    • 使用首字母大写的方式命名类(CamelCase)。
  6. 表达式和语句

    • 不要在一行内写过多的语句。
    • 避免使用复杂的表达式,尽量保持简单。
  7. 编码

    • 代码应该默认使用 UTF-8 编码。
  8. 错误和异常

    • 使用 raise 来引发异常,而不是 raise Exception()
  9. 代码注释

    • 对复杂的操作进行注释,解释为什么代码要这么做。
  10. 类型注解

    • 从 Python 3.5 开始,可以使用类型注解来提高代码的可读性和健壮性。
  11. 函数和方法

    • 函数参数应该以单个空格分隔。
    • 函数应该完成一个单一的任务。
  12. 命名空间

    • 避免使用全局变量。
  13. 布尔上下文

    • 在布尔上下文中,不要使用 if x: 这样的语句,除非 x 明显是一个布尔值。
  14. 序列

    • 使用列表推导式来创建列表。[expression for item in iterable if condition],其中iterable:一个可迭代对象,比如列表、元组、字典等。
    • even_numbers = [x for x in range(20) if x % 2 == 0] # [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]
    • squares_dict = {x: x**2 for x in range(5)} # {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}
  15. 元组

    • 单元素元组应该包含一个尾随逗号,例如 (a,)
  16. 字典

    • 键值对应该使用等号 = 分隔,多个键值对之间用逗号分隔。
  17. 比较

    • 使用 == 来检查对象的相等性,使用 is 来检查对象的同一性。
  18. 字符串

    • 使用一致的方式表示字符串,通常是单引号 ' 或双引号 "

PEP 8 只是一个指南,并不是强制的规则。但在 Python 社区中,遵循 PEP 8 可以使得代码风格统一,提高代码的可读性。此外,可以使用工具如 flake8pylint 来检查代码是否符合 PEP 8 的规范。

Python 的深浅拷贝(🧡🧡,被问到 了,一问一个不吱声大哭)

先了解一下引用,通过一个名字来用一个对象,举例:
a = [1,2],此时a就是列表[1,2]这个对象的引用。如果b = a,b是列表[1,2]这个对象的另一个引用,当我改变a的值,b也会变。 所以,变量(名)是对象的引用,b这个新变量并没有创建新的实例,而是指向同一个对象的新引用。
了解了引用,再来看浅拷贝。
浅拷贝:copy.copy 拷贝前后的列表只有外层独立,内里嵌套列表还是共享的,你变他也变。对于内层只复制了元素的引用,没有复制元素本身,两个都指向同一个对象。而外层对象是一个新的对象,这个新的列表顶层对象包含了对子列表对象的引用,比如下面的:[1, 2, 3, [1, 2]]是新对象[1,2,3,[子列表对象的引用即1,2]]

>>> import copy
>>> list1 = [1, 2, 3, [1, 2]]
>>> list2 = copy.copy(list1)
>>> list2.append('a')
>>> list2[3].append('a')
>>> list1
[1, 2, 3, [1, 2, 'a']]
>>> list2
[1, 2, 3, [1, 2, 'a'], 'a']

深拷贝:copy.deepcopy 拷贝前后完全独立,深深断联,互不相干。因为复制的是元素本身,生成的是新对象。

>>> import copy
>>> list1 = [1, 2, 3, [1, 2]]
>>> list3 = copy.deepcopy(list1)
>>> list3.append('a')
>>> list3[3].append('a')
>>> list1
[1, 2, 3, [1, 2]]
>>> list3
[1, 2, 3, [1, 2, 'a'], 'a']

深拷贝比浅拷贝更消耗资源,因为它需要创建更多的对象。

12 [lambda x:i*x for i in range(4)] 🧡🧡

首先,lambda 匿名函数,为啥用?
只有一行的函数,省去定义过程;不需要重复使用的,用完立即释放。
其次,闭包。定义是:在内部函数里,引用了外部函数局部作用域的变量,使外层函数已经执行完毕。闭包可以访问创建时的环境状态。闭包函数是指当前函数用到上一层函数的局部作用域的变量时,触发了闭包规则的函数。注意只有在内部函数被调用时才去引用外部变量,没被调用时变量命名空间还不存在哩。
回看[lambda x:i*x for i in range(4)],i是外层作用域,lambda x:ix是内层函数,在构建列表推导式时,对于每一个i都创建一个ix,就是[ix,ix,ix,ix]此时i = 3,所以内部的i*x还没开始计算,也就是lambda x内部还没被调用,i的递归只是创建了4个lambda 表达式。每个 lambda 表达式中的i只是对外部变量的引用

>>> def num():
...     return [lambda x:i*x for i in range(4)] #返回的是一个函数列表[3x,3x,3x,3x]
...
>>> [m(1) for m in num()] #对于函数列表中的每一个函数,赋值参数为1
[3, 3, 3, 3]

想要解决,确保了每个 lambda 表达式捕获了 i 的一个独立副本,变局部作用域为闭包作用域,局部作用是执行完毕就会被销毁,闭包作用域是外部已经执行完毕了,内部还可以访问外部的变量的值。

>>> def num():
...     return [lambda x, i = i : i*x for i in range(4)]

13 打印九九乘法表

>>> for i in range(1, 10):
...     for j in range(1, i + 1):
...         print(f"{i}*{j}={i * j}", end=" ")
...     print()
...
1*1=1
2*1=2 2*2=4
3*1=3 3*2=6 3*3=9
4*1=4 4*2=8 4*3=12 4*4=16
5*1=5 5*2=10 5*3=15 5*4=20 5*5=25
6*1=6 6*2=12 6*3=18 6*4=24 6*5=30 6*6=36
7*1=7 7*2=14 7*3=21 7*4=28 7*5=35 7*6=42 7*7=49
8*1=8 8*2=16 8*3=24 8*4=32 8*5=40 8*6=48 8*7=56 8*8=64
9*1=9 9*2=18 9*3=27 9*4=36 9*5=45 9*6=54 9*7=63 9*8=72 9*9=81

print函数默认是会换行的,其有一个默认参数 end;
range左闭右开,打印一个下三角。

14 filter、map、reduce 的作用

reduce 递归遍历了每个元素,返回一个值,用一行代码解决求和、最大值、

15. 为什么不建议函数的默认参数传入可变对象

默认参数是可变的,那调用第二次传入的参数就是第一次调用完的结果,效果会叠加如下

def append_to_element(element, append_to=[]):
   element.append(append_to)
   return element

# 第一次调用函数,预期的行为
print(append_to_element("new item"))  # 输出: ['new item']

# 第二次调用函数,非预期的行为
print(append_to_element("another item"))  # 输出: ['new item', 'another item']

为了让每次调用都相互独立,不要用可变变量为默认参数,默认改为none,当是默认none时再创建一个[ ]

def append_to_element(element, append_to=None):
    if append_to is None:
        append_to = []
    element.append(append_to)
    return element

16. 面向对象中__new__ 和 init 区别(🧡🧡)

new是类方法,用于创建一个实例对象,对其进行内存分配。参数是cls(类名)
创建完实例对象之后,init作为实例方法,对实例对象进行初始化一些属性和参数。参数是self(实例名)
在面向对象编程中,__new____init__ 是两个特殊的方法,它们在创建对象时有不同的用途和行为:

举例说明:

假设我们有一个简单的类 MyClass

class MyClass:
    def __new__(cls, *args, **kwargs):
        # 一般new不需要重写,可以在这里执行一些逻辑,例如改变创建的对象类型
        print("Creating object with __new__")
        instance = super().__new__(cls)  # 创建对象,保留父类的方法,避免重复
        return instance

    def __init__(self, value):
        # 在这里设置对象的初始状态
        print("Initializing object with __init__")
        self.value = value

# 创建 MyClass 的实例
obj = MyClass(10)

输出将是:

Creating object with __new__
Initializing object with __init__

在这个例子中,__new__ 首先被调用并创建了 MyClass 的一个新实例。然后,__init__ 被调用,设置 value 属性。

重写 __new__ 的例子:

class BaseClass:
    def __new__(cls, *args, **kwargs):
        print("BaseClass __new__ called")
        return super().__new__(cls)

    def __init__(self, value):
        self.value = value

class SubClass(BaseClass):
    def __new__(cls, *args, **kwargs):
        print("SubClass __new__ called, changing object type")
        instance = super().__new__(BaseClass)  # 创建 BaseClass 的实例
        return instance

    def __init__(self, value):
        super().__init__(value)  # 初始化 BaseClass 的 __init__
        print(f"SubClass initialized with value: {self.value}")

# 创建 SubClass 的实例
sub_obj = SubClass(20)

输出将是:

SubClass __new__ called, changing object type
BaseClass __new__ called
SubClass initialized with value: 20

在这个例子中,我们重写了 SubClass__new__ 方法,使其创建了 BaseClass 的实例而不是 SubClass 的实例。这演示了 __new__ 方法如何控制对象的创建过程。

通常,__new__ 方法在大多数情况下不需要重写,除非你有特殊的对象创建逻辑。而 __init__ 方法则更常用于初始化对象的状态。

17. 三元运算规则

执行1 if 条件 else 执行2

>>> >>> a, b = 1, 2
>>> h = a - b if a > b else a + b
>>> h
3

18. 生成随机数

用np.random也可以!

>>> import random
>>> random.random()
0.7571910055209727
>>> random.randint(1, 100)
23
>>> random.uniform(1, 5)  #random.uniform(a, b) 返回一个随机浮点数 N,使得 a <= N < b
3.0640732831151687

19. zip 函数用法

zip() 函数将可迭代的对象作为参数,将对象中对应的元素打包成一个元组,然后返回由这些元组组成的列表。
一对一打包成元组

>>> list1 = ['zhangfei', 'guanyu', 'liubei', 'zhaoyun']
>>> list2 = [0, 3, 2, 4]
>>> list(zip(list1, list2))
[('zhangfei', 0), ('guanyu', 3), ('liubei', 2), ('zhaoyun', 4)]

20. range和xrange的区别

只有Python2中才有xrange()和range(),Python3中的range()其实就是Python2中xrange()。即都用range

21. with方法打开文件的作用

打开文件在进行读写的时候可能会出现一些异常状况,如果按照常规的f.open()写法,我们需要 try,except,finally,做异常判断,并且文件最终不管遇到什么情况,都要执行f.close() 关闭文件,with方法帮我们实现了finally 中 f.close()。
所以,能在代码执行完毕后,资源能够被正确地关闭或释放,即使在代码执行过程中发生异常也是如此。

with open("hello.txt", "a") as f:
    f.write("hello world!")

总结:文件会遇到异常,也都需要关闭,用with打开不论是否遇到异常,都能正确关闭。

22. 字符串转列表 s.split(‘,’)

>>> s = "1,2,3,4,5,6,7,8,9"
>>> s.split(",")
['1', '2', '3', '4', '5', '6', '7', '8', '9']

字符串split返回列表

23. 字符串转整数

list(map(lambda x: int(x), s.split(",")))先转为列表,再用map遍历转int

24.删除列表中的重复值

先变成set集合再list,变过去再变回来,集合去重 list(set(mylist))

25. 字符串单词统计

统计字母个数用collection的counter

>>> from collections import Counter
>>> mystr = 'sdfsfsfsdfsd,were,hrhrgege.sdfwe!sfsdfs'
>>> Counter(mystr)
Counter({'s': 9,
         'd': 5,
         'f': 7,
         ',': 2,
         'w': 2,
         'e': 5,
         'r': 3,
         'h': 2,
         'g': 2,
         '.': 1,
         '!': 1})

统计单词个数,先变为列表,在计算列表长度

>>> mystr2 = "hello, Nice to meet you!"
>>> len(mystr2.split(" "))
5

26. 列表推导,求奇偶数

[x for x in range(20) if x % 2 == 1]

27. 一行代码展开列表

对于list1中的每个元素i(子列表),遍历其所有元素j,并将这些元素收集到一个新的列表中:list1 = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
[ j for i in list1 for j in i]

28. 实现二分法查找函数

//向下取整到最接近的整数
非递归

def binary_search(data, item):
    left = 0
    right = len(data) - 1
    while left <= right:
        mid = (left + right) // 2
        if data[mid] == item:
            return True
        elif data[mid] < item:
            left = mid + 1
        else:
            right = mid - 1
    return False

递归

def binary_search(data, item):
    n = len(data)
    if n > 0:
        mid = n // 2
        if data[mid] == item:
            return True
        elif data[mid] > item:
            return binary_search(data[:mid], item)
        else:
            return binary_search(data[mid + 1:], item)
    return False

不管怎样,都是返回等于,更新是中间值-1和中间值+1

29. 合并两个元组到字典(zip一对一打包)

先zip再dict

>>> a = ("zhangfei", "guanyu")
>>> b = (66, 80)
>>> dict(zip(a, b)) ## 
{'zhangfei': 66, 'guanyu': 80}

30. 给出如下代码的输入,并简单解释

>>> a = (1, 2, 3, [4, 5, 6, 7], 8)
>>> a[3] = 2

✘:()是元组,元组不能修改,不可变

>>> a = (1, 2, 3, [4, 5, 6, 7], 8)
>>> a[3][2] = 2
>>> a
(1, 2, 3, [4, 5, 2, 7], 8)

✔:列表可修改,就()元组不行

32. 列表推导式[]、字典推导式{}和生成器表达式()

列表推导式是方括号[],返回一个列表list [ k for k in range(10)]
字典推导式是花括号还有键和值,返回一个字典dic

>>> dic = {k: 2 for k in ["a", "b", "c", "d"]}
>>> dic
{'a': 2, 'b': 2, 'c': 2, 'd': 2}
>>> type(dic)
dict

生成器是圆括号(),用next访问元素

ge = (i for i in range(20))
>>> ge_list
<generator object <genexpr> at 0x000001C3C127AAC8>  #由一个生成器表达式(<genexpr>)创建,并存储在内存地址0x000001C3C127AAC8处
next(ge)

33. 简述 read、readline、readlines 的区别

read() 读取整个文件
readline() 读取下一行,使用生成器方法
readlines() 读取整个文件到一个迭代器,需要一行一行遍历才能输出

# 假设有一个名为 'example.txt' 的文件,内容如下:
# Line 1
# Line 2
# Line 3

with open('example.txt', 'r') as file:
    # 使用 read() 方法读取整个文件
    content = file.read()
    print(content)

    # 重置文件指针到开始位置
    file.seek(0)

    # 使用 readline() 方法逐行读取
    print(file.readline())  # 输出: 'Line 1\n'
    print(file.readline())  # 输出: 'Line 2\n'

    # 再次重置文件指针到开始位置
    file.seek(0)

    # 使用 readlines() 方法读取所有行
    lines = file.readlines()
    for line in lines:
        print(repr(line))  # 输出: 'Line 1\n', 'Line 2\n', 'Line 3\n'

34. 打乱一个列表 andom.shuffle

>>> import random
>>> list = list(range(1, 10))
>>> random.shuffle(list)
>>> list
[3, 9, 1, 4, 6, 2, 8, 7, 5]

35. 反转字符串

‘luobodazahui’[::-1]表示以-1的步长向前遍历,相当于从后往前遍历一遍,也就是反转。而列表可以直接用reverse

36. 单下划线和双下划线的作用

37. 新式类和旧式类

在 python 里凡是继承了 object的类,都是新式类
Python3 里只有新式类
(又是一个版本的问题)

38. Python 面向对象中的继承有什么特点

继承是一种创建新类的方式,在 Python 的面向对象编程中,继承具有以下特点:

  1. 基类(父类)与子类(子类):在继承关系中,被继承的类称为基类或父类,继承基类的类称为子类。子类会继承基类的属性和方法。

  2. 属性与方法继承:子类会继承基类的所有属性和方法,因此在子类中可以访问基类的属性和方法。根据继承方式的不同(如单继承、多重继承),子类可以继承多个基类的属性和方法。

  3. 扩展与覆盖:子类可以在继承基类的基础上进行扩展,添加新的属性和方法。同时,子类也可以覆盖(重写)基类的方法以实现不同的功能。当子类中定义了与基类同名的方法时,子类会优先调用自己的方法。

  4. super() 函数:在子类中,可以使用 super() 函数来调用基类的方法。这在子类需要在重写方法的基础上扩展基类功能时非常有用。使用 super() 函数可以确保基类的方法按照方法解析顺序(MRO)正确地调用。

  5. 方法解析顺序(MRO):Python 中使用 C3 线性化算法来解决多重继承的顺序问题。MRO 是一个包含类自身及其所有基类的有序列表,它决定了类继承体系中调用方法的顺序。可以使用 ClassName.mro()super() 函数查看 MRO 列表。

  6. 抽象基类(ABC):Python 中的抽象基类用于定义接口规范,它强制子类实现特定的方法。抽象基类可以通过 abc 模块的 ABCMeta 元类和 abstractmethod 装饰器来实现。

下面是一个简单的继承示例:

class Animal:
    def __init__(self, name):
        self.name = name

    def speak(self):
        pass

class Dog(Animal):
    def speak(self):
        return f'{self.name} says Woof!'

class Cat(Animal):
    def speak(self):
        return f'{self.name} says Meow!'

animals = [Dog("Max"), Cat("Molly")]

for animal in animals:
    print(animal.speak())

在这个示例中,DogCat 类都继承了 Animal 类,并分别覆盖了 speak() 方法。

39. super 函数的作用

用于调用父类(超类)的方法或初始化父类(在__init__中)

class Parent:
    def __init__(self, value):
        self.value = value

    def show(self):
        print(f"Parent value: {self.value}")

class Child(Parent):
    def __init__(self, value, extension):
        super().__init__(value)  # 初始化父类的 __init__
        self.extension = extension

    def show(self):
        super().show()  # 调用父类的 show 方法
        print(f"Child extension: {self.extension}")

# 创建 Child 类的实例
child = Child(10, 'extra info')
child.show()

40. 类中的各种方法

在类中,我们可以定义各种不同类型的函数,主要包括以下几种:

  1. 实例方法:这是类中最常见的函数类型,它们需要通过实例来调用,第一个参数默认为 self,代表实例本身,可以访问和修改实例的属性。
class MyClass:
    def instance_method(self, a, b):
        return a + b
  1. 类方法:类方法是定义在类上的函数,通过 @classmethod 装饰器来修饰,它们的第一个参数默认为 cls,代表类本身,可以访问和修改类属性,但不能访问实例属性。
class MyClass:
    class_variable = 123

    @classmethod
    def class_method(cls):
        cls.class_variable += 1
        return cls.class_variable
  1. 静态方法:静态方法是定义在类上的函数,通过 @staticmethod 装饰器来修饰,它们不需要特定的第一个参数,不能访问类或实例的任何属性。
class MyClass:
    @staticmethod
    def static_method(a, b):
        return a * b
  1. 属性方法:属性方法可以让类的一个方法变成只读属性,或者为属性的读写提供特定的方法。通过 @property 装饰器实现。
class MyClass:
    def __init__(self, value):
        self._value = value

    @property
    def value(self):
        return self._value

    @value.setter
    def value(self, new_value):
        if isinstance(new_value, int):
            self._value = new_value
        else:
            raise ValueError("Value must be an integer")
  1. 魔法方法:这些方法以双下划线开头和结尾,由 Python 自动调用,用于实现类的内部机制。比如 __init__, __del__, __str__, __eq__ 等。
class MyClass:
    def __init__(self, value):
        self.value = value

    def __str__(self):
        return f"MyClass with value {self.value}"

    def __eq__(self, other):
        if isinstance(other, MyClass):
            return self.value == other.value
        return False

以上就是类中常见的几种函数类型。

41. 如何判断是函数还是方法

与类和实例无绑定关系的 function都属于函数(function)
与类和实例有绑定关系的 function都属于方法(method)

42. isinstance 的作用以及与type()的区别(🧡🧡)

区别:

type()不会认为子类是一种父类类型,不考虑继承关系
isinstance()会认为子类是一种父类类型,考虑继承关系

class A(object):
    pass

class B(A):
    pass

>>> a = A()
>>> b = B()

>>> print(isinstance(a, A))
True
>>> print(type(a) == A)
True

>>> print(isinstance(b, A)) #考虑继承
True
>>> print(type(b) == A) #不考虑继承
False

43. 单例模式与工厂模式

单例模式和工厂模式是两种常用的软件设计模式,它们在软件设计中扮演着不同的角色,具有各自的特点和适用场景。以下是两种模式的详细介绍:

单例模式

  • 定义:单例模式是一种设计模式,它确保一个类只有一个实例,并提供一个全局访问点来访问该实例。
  • 特点
    • 唯一性:单例模式保证一个类在整个应用程序中只有一个实例。
    • 全局访问点:通过单例模式,可以提供一个全局访问点来访问该类的唯一实例。
  • 适用场景:适用于创建一个对象需要消耗过多资源,或者需要保证对象唯一性的场景,如数据库连接池、线程池等。
  • 实现方式:单例模式有多种实现方式,包括懒汉式、饿汉式、双重检查锁和登记式等。

工厂模式

  • 定义:工厂模式是一种设计模式,它通过一个工厂类来封装和抽象对象的创建过程,使得客户端代码不需要直接进行对象的实例化。
  • 特点
    • 封装性:工厂模式封装了对象创建的细节,降低了系统各部分之间的耦合度。
    • 接口一致性:所有创建的对象通常都实现自同一个接口或继承自同一个基类,增加了代码的灵活性。
  • 适用场景:适用于需要生成复杂对象,或者需要灵活应对不同条件创建不同实例的场景,如数据库访问、日志记录等。
  • 实现方式:工厂模式有多种实现方式,包括简单工厂模式、工厂方法模式和抽象工厂模式。

区别

  • 目的:单例模式主要用于控制类的实例数量,确保只有一个实例;而工厂模式主要用于封装对象的创建过程,提高代码的可维护性和可扩展性。
  • 实现方式:单例模式通过类的静态方法和私有构造函数来实现;工厂模式通过工厂类来创建对象实例。
  • 适用场景:单例模式适用于需要保证对象唯一性的场景;工厂模式适用于需要灵活创建不同对象实例的场景。

通过以上分析,我们可以看到单例模式和工厂模式在设计模式中各有其独特的用途和优势,选择哪种模式取决于具体的应用场景和需求。

44. 查看目录下的所有文件

import os
print(os.listdir('.'))  # 其中 '.' 表示当前工作目录。这个函数会返回一个列表,包含了当前目录下所有的文件和目录名。

45. 计算由1到5组成的互不重复的三位数

for i in range(1,6):
	for j  in range(1,6):
		for k in range(1,6):
			if i != j and j != k  and k !=i:
			print(f"{i}{j}{k}")

46. 去除字符串首尾空格

.strip(删除字符串两端的空白字符或者指定字符

>>> "   hello world    ".strip()
'hello world'

47. 去除字符串中间的空格

>>> "hello you are good".replace(" ", "")
'helloyouaregood'
>>> "".join("hello you are good".split(" "))
'helloyouaregood'

48. 字符串格式化方式

方法一:使用 % 操作符

print(“This is for %s” % “Python”)
print(“This is for %s, and %s” %(“Python”, “You”))

方法二:str.format(在 Python3 中,引入了这个新的字符串格式化方法)

print(“This is my {}”.format(“chat”))
print(“This is {name}, hope you can {do}”.format(name=“zhouluob”, do=“like”))

方法三:f-strings(在 Python3-6 中,引入了这个新的字符串格式化方法)

name = “luobodazahui”
print(f"hello {name}")

49. 将"hello world"转换为首字母大写"Hello World"

1 对字符串.title()函数 str1 = “hello world”
str1.title()
2 .对单词capitalize()函数
" ".join(list(map(lambda x: x.capitalize(), str1.split(" "))))
3 对字符.upper()
" ".join(list(map(lambda x: x[0].upper() + x[1:], str1.split(" "))))

map()函数将这个函数应用到分割后的单词列表的每个元素上

50. 一行代码转换列表中的整数为字符串

>>> list1 = [1, 2, 3]
>>> list(map(lambda x: str(x) for x in list1))# 或者 [lambda x: str(x) for x in list1]列表推导式
['1', '2', '3']

51. Python 中的反射(🧡🧡)27号

基于字符串的事件驱动!利用字符串的形式对模块的内存进行修改
getattr,hasattr,setattr,delattr 对模块的修改都在内存中进行,并不会影响文件中真实内容。

52. metaclass 元类(🧡🧡)

type就是创建object类对象的类,obeject是type的实例,创建一个类其实是type的__call__运算符的重载
在这里插入图片描述
正常的 MyClass 定义,和手工去调用type运算符的结果是一样的

class X:
    a = 1
    
X = type('X', (object,), dict(a=1))

那元类是干嘛的呢?
是type的子类,通过替换type中的__call__运算符重载机制,可以实现父类对子类的属性进行操作。

class MyMeta(type):
    def __new__(cls, *args, **kwargs):
        print('===>MyMeta.__new__')
        print(cls.__name__)
        return super().__new__(cls, *args, **kwargs)
 
    def __init__(self, classname, superclasses, attributedict):
        super().__init__(classname, superclasses, attributedict)
        print('===>MyMeta.__init__')
        print(self.__name__)
        print(attributedict)
        print(self.tag)
 
    def __call__(self, *args, **kwargs):
        print('===>MyMeta.__call__')
        obj = self.__new__(self, *args, **kwargs)
        self.__init__(self, *args, **kwargs)
        return obj
 
    
class Foo(object, metaclass=MyMeta):
    tag = '!Foo'
 
    def __new__(cls, *args, **kwargs):
        print('===>Foo.__new__')
        return super().__new__(cls)
 
    def __init__(self, name):
        print('===>Foo.__init__')
        self.name = name
# ----------------------输出----------------------
# ===>MyMeta.__new__
# MyMeta
# ===>MyMeta.__init__
# Foo
# {'__module__': '__main__', '__qualname__': 'Foo', 'tag': '!Foo', '__new__': <function Foo.__new__ at 0x000001B1B2379678>, '__init__': <function Foo.__init__ at 0x000001B1B2379708>, '__classcell__': <cell at 0x000001B1B23880A8: MyMeta object at 0x000001B1B1A509A8>}
# !Foo
 
>>> print('test start')
>>> foo = Foo('test')
>>> print('test end')
# test start
# ===>MyMeta.__call__
# ===>Foo.__new__
# ===>Foo.__init__
# test end

创建一个类时,(1)先在属性中查找是否有metaclass属性,(2)没有,就在父类中查找(3)没有就在模块中查找(4)再没有,就用type来创建对象。
注意,通过metaclass,必须返回一个类return obj
同时,可以实现在创建时,就对子类的属性进行操作。(一般父类是不可以对子类的属性操作的哦)

def MyMetaFunction(classname, superclasses, attributedict):
    attributedict['year'] = 2019
    return type(classname, superclasses, attributedict)
 
 
class Foo(object, metaclass=MyMetaFunction):
    tag = '!Foo'
 
    def __new__(cls, *args, **kwargs):
        print('===>Foo.__new__')
        return super().__new__(cls)
 
    def __init__(self, name):
        print('===>Foo.__init__')
        self.name = name
 
>>> foo = Foo('test')
===>Foo.__new__
===>Foo.__init__
>>> print('name:%s,tag:%s,year:%s' % (foo.name, foo.tag, foo.year))
name:test,tag:!Foo,year:2019

先有元类,再有类,再有实例。

53. sort 和 sorted 的区别

sort改变原列表。sorted返回一个新的对象

54. Python 中的 GIL

GIL 是 Python 的全局解释器锁,同一进程中假如有多个线程运行,一个线程在运行 Python 程序的时候会占用 Python 解释器(加了一把锁即 GIL),使该进程内的其他线程无法运行,等该线程运行完后其他线程才能运行。如果线程运行过程中遇到耗时操作,则解释器锁解开,使其他线程运行。所以在多线程中,线程的运行仍是有先后顺序的,并不是同时进行。

进程(Process)

  • 定义:进程是操作系统进行资源分配和调度的一个独立单位。它是应用程序运行的实例,拥有独立的内存空间。
  • 地址空间:每个进程有自己的地址空间,这包括代码段、数据段和堆栈等。
  • 全局数据:进程拥有自己的全局变量和静态变量。
  • 独立性:进程之间相互独立,一个进程的崩溃不会直接影响到其他进程。
  • 资源占用:进程间通信(IPC)和进程切换开销较大,因为它们需要操作系统进行协调。
  • 创建和销毁开销:进程的创建和销毁需要较多的资源和时间。

线程(Thread)

  • 定义:线程是进程中的一个实体,是CPU调度和执行的单位,是程序执行的最小单位。
  • 地址空间:同一进程内的线程共享进程的地址空间,包括代码段和数据段。
  • 全局数据:线程共享相同的全局变量和静态变量。
  • 轻量级:线程的创建、同步和销毁的开销比进程小。
  • 并发性:线程使得多任务并发执行成为可能,它们可以并行处理任务。
  • 资源共享:线程之间可以轻松共享数据,但这也可能导致数据同步问题。

进程与线程的区别:

  1. 资源占用:进程拥有独立的资源,线程共享进程的资源。
  2. 执行:进程是程序的执行流程,线程是进程中执行的子流程。
  3. 创建开销:进程的创建和销毁开销较大,线程相对较小。
  4. 通信:进程间通信需要使用IPC机制,线程间可以直接访问共享内存。
  5. 独立性:进程间独立,线程间共享。
  6. 错误影响:进程的一个错误通常不会影响其他进程,但线程的错误可能影响整个进程。
  7. 上下文切换:线程间的上下文切换比进程快,因为它们共享同样的内存空间。

理解示例:

  • 进程可以比作一个工厂,每个工厂拥有自己的资源和生产流程。
  • 线程可以比作工厂中的工人,他们共享工厂的资源,协同工作以完成生产任务。

55. 产生8位随机密码(🧡🧡)

random.choice选择,string.printable生成字符串

>>> import random
>>> import string
>>> "".join(random.choice(string.printable[:-7]) for i in range(8)) # 从 string.printable 中移除最后 7 个字符

生成器表达式和列表推导式(list comprehension)都是简洁地创建新数据结构的方法,但它们之间存在一些关键区别:

  1. 内存使用:列表推导式会立即生成一个新的列表,这意味着它会占用与列表大小成正比的内存。对于大型数据集,这可能导致内存不足。而生成器表达式不会立即生成值,而是返回一个生成器对象。这个对象在迭代过程中逐个产生值,因此它的内存占用很小,无论它表示的序列有多大。

  2. 语法:生成器表达式的语法与列表推导式非常相似,只是在圆括号而不是方括号内编写。例如:

    • 列表推导式:[expr for item in iterable if condition]
    • 生成器表达式:(expr for item in iterable if condition)
  3. 返回类型:列表推导式返回一个列表,而生成器表达式返回一个生成器对象(generator 类型)。生成器对象实现了迭代器协议,可以使用 next() 函数或 for 循环进行迭代。

  4. 可迭代性:生成器表达式返回的生成器对象只能迭代一次。当所有值都被迭代完后,生成器对象就会耗尽。要再次迭代,需要重新创建一个新的生成器对象。而列表推导式返回的列表可以多次迭代。

以下是一个简单的例子,展示了列表推导式和生成器表达式的用法:


# 列表推导式 squares = [random.randint(1, 100) ** 2 for _ in range(5)] print(squares)

# 生成器表达式 squares_gen = (random.randint(1, 100) ** 2 for _ in range(5)) for square in squares_gen:
    print(square, end=" ") ```

56. 输出原始字符

>>> print('hello\nworld')
hello
world
>>> print(b'hello\nworld')
b'hello\nworld'
>>> print(r'hello\nworld')
hello\nworld

b 前缀表示字节字符串(byte string),即 b’hello\nworld’ 是一个包含字节的不可变序列。这种字符串用于处理二进制数据。
r 前缀表示原始字符串(raw string),在这种字符串中,转义字符不会被处理。

57. 简述 any() 和 all() 方法

all 可迭代对象中的所有元素是否都为 True
any 函数用于判断可迭代对象中是否至少有一个元素为 True
0 none false都是false

58. 反转整数

是否是整数,是否一位数,是否负数

 def reverse_int(x):
     if not isinstance(x, int):
         return False
     if -10 < x < 10:
         return x
     tmp = str(x)
     if tmp[0] != '-':
         tmp = tmp[::-1]
         return int(tmp)
    else:
        tmp = tmp[1:][::-1]
        x = int(tmp)
        return -x

59. 函数式编程(🧡🧡)

函数式编程是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数称之为没有副作用。而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的。由于 Python 允许使用变量,因此,Python 不是纯函数式编程语言

函数式编程允许参数是函数,也允许返回一个函数

60. 简述闭包(🧡🧡)

如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是闭包(closure)。允许函数“记住”其被创建时的环境状态,即使外层函数已经执行完毕
闭包特点:

必须有一个内嵌函数;
内嵌函数必须引用外部函数中的变量;
外部函数的返回值必须是内嵌函数。

闭包的应用场景: 柯里化(Currying):将一个多参数的函数转换成多个单参数函数。 数据隐藏:通过闭包实现封装和数据隐藏。
装饰器:Python中的装饰器就是一个典型的闭包应用。 迭代器和生成器:迭代器和生成器的 next 方法经常使用闭包来保持迭代状态。

61. 简述装饰器(🧡🧡)

装饰器是一个嵌套函数,不需要修改被装饰函数的源代码,用于给被装饰的函数修改或添加功能,内部的wrapper函数替代原始函数。
被装饰函数作为参数传入装饰器,内部函数替代原始函数执行后还可以添加一些功能。
广泛应用于缓存、权限校验(如django中的@login_required和@permission_required装饰器)、性能测试(比如统计一段程序的运行时间)和插入日志等应用场景

基本用法:

  1. 定义装饰器

    • 创建一个装饰器函数,通常接受一个函数作为参数。
  2. 包装函数

    • 在装饰器内部,定义一个包装函数(通常命名为 wrapper),它将被返回以替代原始函数。
  3. 调用原始函数

    • 在包装函数中,你可以添加额外的逻辑,然后调用原始函数。
  4. 返回包装函数

    • 装饰器返回包装函数,这样当原始函数被调用时,实际上是调用了包装函数。

示例:

def my_decorator(func):
    def wrapper():
        print("Something is happening before the function is called.")
        func()
        print("Something is happening after the function is called.")
    return wrapper

@my_decorator
def say_hello():
    print("Hello!")

say_hello()

输出:

Something is happening before the function is called.
Hello!
Something is happening after the function is called.

在这个例子中,my_decorator 是一个装饰器,它接受一个函数 func 作为参数,并返回一个新的函数 wrappersay_hello 函数被 @my_decorator 装饰,这意味着 say_hello 函数被 my_decorator 包装。

带参数的装饰器:

装饰器也可以接受参数。为了实现这一点,你可以在装饰器外层再定义一个函数,该函数接受参数并返回实际的装饰器。

def repeat(num_times):
    def decorator(func):
        def wrapper(*args, **kwargs):
            for _ in range(num_times):
                result = func(*args, **kwargs)
            return result
        return wrapper
    return decorator

@repeat(num_times=3)
def greet(name):
    print(f"Hello, {name}!")

greet("World")

输出:

Hello, World!
Hello, World!
Hello, World!

在这个例子中,repeat 函数接受一个参数 num_times,然后返回一个装饰器 decorator,该装饰器接受一个函数并返回一个新的包装函数 wrapper

装饰器的用途:

  • 日志记录:在函数执行前后添加日志记录。
  • 性能测试:测量函数执行时间。
  • 事务处理:确保数据库事务的一致性。
  • 权限检查:在执行函数前检查用户权限。
  • 缓存:缓存函数的结果以提高性能。

62. 协程的优点

63. 实现斐波那契数列

64. 正则切分字符串

items = re.split(pattern, text)
正则表达式(Regular Expression,简称regex)是一种强大的文本处理工具,用于搜索、替换、切分或匹配字符串中的模式。在Python中,正则表达式通过内置的re模块提供支持。

使用正则表达式切分字符串的基本步骤:

  1. 导入re模块

    import re
    
  2. 编写正则表达式

    • 正则表达式是一个字符串,包含了用于定义搜索模式的字符和特殊符号。
  3. 使用re.split()方法

    • re.split(pattern, string):使用正则表达式pattern来切分字符串string
  4. 获取结果

    • re.split()返回一个列表,其中包含了被正则表达式定义的模式切分后的子字符串。

示例:

假设我们有一个字符串,包含了用逗号分隔的数值,我们想要将这些数值单独切分出来:

import re

text = "apple,101,banana,202,cherry,303"
# 正则表达式:非数字字符(,)
pattern = r'[^\d]+'

# 使用正则表达式切分字符串
items = re.split(pattern, text)
print(items)  # 输出: ['apple', '101', 'banana', '202', 'cherry', '303']

在这个例子中,[^\d]+是一个正则表达式,表示匹配一个或多个非数字字符。re.split()使用这个模式来切分字符串text

注意事项:

  • 正则表达式需要根据具体需求来编写,不同的模式会有不同的切分效果。
  • 特殊字符(如*.?[ ]( )等)在正则表达式中有特殊含义,如果需要匹配这些字符本身,通常需要使用反斜杠\进行转义。
  • 使用正则表达式时,要注意其性能,复杂的正则表达式可能会影响程序的执行效率。

正则表达式是一种非常灵活和强大的文本处理工具,掌握它可以大大提高处理字符串的效率。

65. yield 用法

67. 冒泡排序

68. 快速排序

快速排序(Quick Sort)是一种高效的排序算法,由英国计算机科学家 Tony Hoare 于 1960 年代提出

快速排序的工作原理如下:

  1. 选择一个基准元素(pivot),可以是列表的任意元素。通常选择列表的第一个元素、最后一个元素或中间元素作为基准。
  2. 将列表中小于基准元素的值移动到基准的左侧;将大于基准元素的值移动到基准的右侧。这个过程称为分区(partitioning)操作。经过分区后,基准元素将位于其最终排序位置。
  3. 对基准元素左侧和右侧的子列表进行递归处理,分别选择左侧子列表和右侧子列表的基准元素并进行分区。
  4. 递归终止条件是处理的子列表只有一个元素或为空。

以下是一个使用 Python 实现的快速排序示例:

def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[len(arr) // 2]
    left = [x for x in arr if x< pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]
    return quick_sort(left) + middle + quick_sort(right)

# 示例
arr = [64, 34, 25, 12, 22, 11, 90]
sorted_arr = quick_sort(arr)
print("Sorted array is:", sorted_arr)

输出结果:

Sorted array is: [11, 12, 22, 25, 34, 64, 90]

快速排序的平均时间复杂度为 O(nlog(n)),最坏情况下的时间复杂度为 O(n^2)。但在实际应用中,快速排序通常比其他 O(nlog(n)) 算法更高效,因为它的内部循环可以在大部分架构上更有效地利用缓存。为了避免最坏情况的发生,可以使用随机方法选择基准元素。

70. requests 简介

71. 比较两个 json 数据是否相等

72. 读取键盘输入 input()

def forinput():
    input_text = input()
    print("your input text is: ", input_text)
    
>>> forinput()
>? 2
your input text is:  2

73. enumerate()的用法

74. pass 语句

占位,不做操作,为了保持结构完整性

def forpass(n):
    if n == 1:
        pass
    else:
        print('not 1')
        
>>> forpass(1)

75. 正则匹配邮箱

76. 统计字符串中大写字母的数量

·if i.isupper()

77. json 序列化时保留中文

ensure_ascii=False

78. 简述继承

79. 什么是猴子补丁(🧡🧡)

猴子补丁(Monkey Patch)和装饰器(Decorator)都是 Python 中用于修改或增强已有对象功能的技术,但它们的用途、实现方式以及适用场景有所不同

猴子补丁(Monkey Patch)

猴子补丁是在运行时动态地修改类或模块的行为。通过直接修改类或模块的属性,可以添加、修改或删除现有的方法、属性等。猴子补丁的主要优点是可以在不修改原始代码的情况下调整行为,这在调试、测试和扩展第三方库时非常有用。然而,猴子补丁可能导致代码难以维护和理解,因为它改变了对象的内部实现。另外,使用猴子补丁时需要谨慎,因为在某些情况下,它可能导致意外的副作用或不可预见的错误。

以下是一个猴子补丁的示例,用于修改字符串类的 upper 方法:

def custom_upper(self):
    return self[::-1].upper()

str.upper = custom_upper

text = "hello"
print(text.upper())  # 输出 "OLLEh"

装饰器(Decorator)

装饰器是一种设计模式,用于在不修改原始函数或类的基础上,为其添加新功能或者修改现有功能。装饰器本质上是一个接受函数或类作为参数的高阶函数,它返回一个新的函数或类,以实现对输入对象功能的扩展或修改。装饰器语法使用 @decorator_name 语法糖,并放在要修饰的函数或类定义之前。

以下是一个使用装饰器记录函数执行时间的示例:

import time

def timer_decorator(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        print(f"{func.__name__} took {end_time - start_time:.2f} seconds to execute.")
        return result
    return wrapper

@timer_decorator
def some_function():
    time.sleep(1)

some_function()

总结:

  • 猴子补丁是在运行时动态修改对象的行为,而装饰器是通过高阶函数在编译时修改或增强对象的功能。
  • 猴子补丁主要适用于对模块或类的内部实现进行修改,而装饰器主要用于修改或增强函数或类的功能,而不改变其内部实现。
  • 装饰器提供了更好的封装、可维护性和可读性,而猴子补丁可能导致代码变得难以理解和维护。
  • 尽量使用装饰器来实现功能扩展,而避免使用猴子补丁,除非确实需要在运行时修改对象的行为。

80. help() 函数和 dir() 函数

81. 解释 Python 中的//,%和**运算符

82. 主动抛出异常

raise

def test_raise(n):
    if not isinstance(n, int):
        raise Exception("not a int type")
    else:
        print("good")
        
>>> test_raise(8.9)
Traceback (most recent call last):
  File "D:\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py", line 3331, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "<ipython-input-106-27962090d274>", line 1, in <module>
    test_raise(8.9)
  File "<ipython-input-105-8095f403c7e2>", line 3, in test_raise
    raise Exception("not a int type")
Exception: not a int type

83. tuple 和 list 转换

tuple () list()

>>> tuple1 = (1, 2, 3, 4)
>>> list1 = list(tuple1)
>>> print(list1)
>>> tuple2 = tuple(list1)
>>> print(tuple2)

84. 简述断言

Python 的断言就是检测一个条件,如果条件为真,它什么都不做;反之它触发一个带可选错误信息的 AssertionError。

85. 什么是异步非阻塞

86. 什么是负索引

87. 退出 Python 后,内存是否全部释放

88. Flask 和 Django 的异同

89. 创建删除操作系统上的文件

90. 简述 logging 模块

91. 统计字符串中字符出现次数

92. 正则 re.complie 的作用

93. try except else / finally 的意义

94. 反转列表

95. 字符串中数字替换

>>> import re
>>> str1 = '我是周萝卜,今年18岁'
>>> re.sub(r"\d+", "20", str1)
'我是周萝卜,今年20岁'

96. 读取大文件(🧡🧡)

97. 输入日期, 判断这一天是这一年的第几天

98. 排序

99. 将字符串处理成字典

100. 下面代码的输出结果将是什么?

补充 被问的

101 python协程 异步

协程 线程 进程都属于并发;并发是在一个处理器上轮流处理任务,强调资源的共享和分配;并行是在多个处理器上同时处理任务,强调硬件资源的利用。

asyncio:异步函数库
request : 同步函数库

详细见metagpt异步编程

102 python子类不用super调用父类属性

不用super一般是不可以调用父类的方法的,但是子类执行行,父类执行__new__ 函数(创建实例),所以想不用super调用父类可以写到__new__里

问题参考自python八股

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1883679.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2.2章节python的变量和常量

在Python中&#xff0c;变量和常量有一些基本的概念和用法&#xff0c;但需要注意的是&#xff0c;Python本身并没有内置的“常量”类型。然而&#xff0c;程序员通常会遵循一种约定&#xff0c;即使用全部大写的变量名来表示常量。 一、变量 在Python中&#xff0c;变量是一…

对不起,AI大模型不是风口

“我们正处在全新起点&#xff0c;这是一个以大模型为核心的人工智能新时代&#xff0c;大模型改变了人工智能&#xff0c;大模型即将改变世界。”——5月26日&#xff0c;百度创始人、董事长兼CEO李彦宏先生在2023中关村论坛发表了《大模型改变世界》演讲。 李彦宏指出&#…

4PCS点云配准算法实现

4PCS点云配准算法的C实现如下&#xff1a; #include <iostream> #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/common/common.h> #include <pcl/common/distances.h> #include <pcl/common/transforms.h> #in…

PostgreSQL介绍与安装

一、PostgreSQL数据库介绍 1、什么是数据库&#xff1f; 数据库&#xff08;Database&#xff09;是按照数据结构来组织、存储和管理数据的仓库。每个数据库都有一个或多个不同的 API 用于创建&#xff0c;访问&#xff0c;管理&#xff0c;搜索和复制所保存的数据。 我们也…

JAVA医院绩效考核管理系统源码:系统优势、系统目的、系统原则 (自主研发 功能完善 可直接上项目)

JAVA医院绩效考核管理系统源码&#xff1a;系统优势、系统目的、系统原则 &#xff08;自主研发 功能完善 可直接上项目&#xff09; 医院绩效考核系统优势 1.实现科室负责人单独考核 对科室负责人可以进行单独考核、奖金发放。 2. 科室奖金支持发放到个人 支持奖金二次分配&…

同一个excel表格,为什么在有的电脑上会显示#NAME?

一、哪些情况会产生#NAME?的报错 1.公式名称拼写错误 比如求和函数SUM&#xff0c;如果写成SUN就会提示#NAME&#xff1f;报错。 2.公式中的文本值未添加双引号 如下图&#xff1a; VLOOKUP(丙,A:B,2,0) 公式的计算结果会返回错误值#NAME?&#xff0c;这是因为公式中文本…

GraphPad Prism生物医学数据分析软件下载安装 GraphPad Prism轻松绘制各种图表

Prism软件作为一款功能强大的生物医学数据分析与可视化工具&#xff0c;其绘图功能尤为突出。该软件不仅支持绘制基础的图表类型&#xff0c;如直观明了的柱状图、展示数据分布的散点图&#xff0c;以及描绘变化趋势的曲线图&#xff0c;更能应对复杂的数据呈现需求&#xff0c…

7-1作业

1.实验目的&#xff1a;完成字符收发 led.h #ifndef __GPIO_H__ #define __GPIO_H__#include "stm32mp1xx_rcc.h" #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_uart.h"//RCC,GPIO,UART初始化 void init();//字符数据发送 void set_tt…

【2024 插件开发大赛】为 ONLYOFFICE 开发插件,赢取万元奖金!

我们发布了 2024 插件开发大赛&#xff1a;为 ONLYOFFICE 开发适合中国用户的插件&#xff0c;赢取税前5500 – 10000元的结项奖金与证书&#xff01;阅读本文了解详情。 关于 ONLYOFFICE ONLYOFFICE 是一个国际开源项目&#xff0c;由领先的 IT 公司 Ascensio System SIA 开发…

论坛万能粘贴手(可将任意文件转为文本)

该软件可将任意文件转为文本。 还原为原文件的方法&#xff1a;将得到的文本粘贴到记事本&#xff0c;另存为UUE格式&#xff0c;再用压缩软件如winrar解压即可得到原文件。建议用于小软件。 下载地址&#xff1a;https://download.csdn.net/download/wgxds/89505015 使用演示…

算法基础入门 - 2.栈、队列、链表

文章目录 算法基础入门第二章 栈、队列、链表2.1 队列2.2 栈2.3 纸牌游戏2.4 链表如何建立链表?1.我们需要一个头指针(head)指向链表的初始。链表还没建立时头指针head为空2.建立第一个结点3.设置刚创建的这个结点的数据域(左半)和指针域(右半)4.设置头指针,头指针可方便…

构建高效的数字风控系统:应对现代网络威胁的策略与实践

文章目录 构建高效的数字风控系统&#xff1a;应对现代网络威胁的策略与实践1. 数字风控基本概念1.1 数字风控&#xff08;数字化风控&#xff09;1.2 数字风控的原理1.3 常见应用场景 2. 数字风控的必要性3. 构建高效的数字风控系统3.1 顶层设计与规划3.2 数据基础建设3.3 风险…

代码随想录第38天|动态规划

1049. 最后一块石头的重量 II 参考 备注: 当物体容量也等同于价值时, 01背包问题的含义则是利用好最大的背包容量sum/2, 使得结果尽可能的接近或者小于 sum/2 等价: 尽可能的平分成相同的两堆, 其差则为结果, 比如 (abc)-d, (ac)-(bd) , 最终的结果是一堆减去另外一堆的和, 问…

Nik Collection by DxO:摄影师的创意利器与调色宝典

在数码摄影的世界里&#xff0c;后期处理是摄影师们展现创意、调整细节、提升作品质量的重要步骤。而Nik Collection by DxO作为一款由DxO公司开发的强大照片编辑插件套件&#xff0c;为摄影师们提供了一套全面的、功能丰富的工具集&#xff0c;让他们的创意得以充分发挥。 Ni…

数据结构 - C/C++ - 栈

目录 结构特性 结构实现 结构容器 结构设计 顺序栈 链式栈 结构特性 栈(stack)是线性表的一种形式&#xff0c;限定仅在表的一端进行插入或者删除的操作。 栈顶 - 表中允许插入、删除的一端称为栈顶(top)&#xff0c;栈顶位置是可以发生变化的。 插入 - 进栈、入栈、压栈…

10月开始,所有新来日本的外国人都必须加入公共年金体系!

为了吸引更多外国人来日本工作并为他们提供更好的养老保障&#xff0c;日本厚生劳动省最近宣布了一项新政策。 从今年10月开始&#xff0c;所有新来日本的外国人都必须加入公共年金体系。 虽然之前已经有这个要求&#xff0c;但还是有不少人没加入。 因此&#xff0c;日本年金机…

每日Attention学习7——Frequency-Perception Module

模块出处 [link] [code] [ACM MM 23] Frequency Perception Network for Camouflaged Object Detection 模块名称 Frequency-Perception Module (FPM) 模块作用 获取频域信息&#xff0c;更好识别伪装对象 模块结构 模块代码 import torch import torch.nn as nn import to…

Win11找不到组策略编辑器(gpedit.msc)解决

由于需要同时连接有线网络和无线网络&#xff0c;且重启后双网络都自动连接&#xff0c;因此需要配置组策略。 但是win11找不到组策略编辑器。 灵感来源&#xff1a;Win11找不到组策略编辑器&#xff08;gpedit.msc&#xff09;解决教程 - 知乎 (zhihu.com) 在Win11中&#…

基于隐马尔可夫模型的股票预测【HMM】

基于机器学习方法的股票预测系列文章目录 一、基于强化学习DQN的股票预测【股票交易】 二、基于CNN的股票预测方法【卷积神经网络】 三、基于隐马尔可夫模型的股票预测【HMM】 文章目录 基于机器学习方法的股票预测系列文章目录一、HMM模型简介&#xff08;1&#xff09;前向后…

Eclipse 2024最新版本分享

一、软件介绍 Eclipse是一个开源的、基于Java的可扩展开发平台&#xff0c;最初由IBM公司开发&#xff0c;后于2001年贡献给开源社区&#xff0c;并由Eclipse基金会负责管理和开发。 如果在官网上下载比较慢&#xff0c;可以试试从云盘中下载&#xff0c;解压即可使用。 二、下…