嵌入式以太网硬件构成与MAC、PHY芯片功能介绍

news2025/1/8 4:51:04

一.以太网电路基本构成

1.总体介绍

对于上述三部分,并不一定都是独立的芯片,主要有以下几种情况:

·CPU内部集成了MAC和PHY,难度较高;

·CPU内部集成MAC,PHY采用独立芯片(主流方案);

·CPU不集成MAC和PHY,MAC和PHY采用独立芯片或者集成芯片(高端采用)

PHY整合了大量模拟硬件,而MAC是典型的全数字器件,芯片面积及模拟/数字混合架构的原因,是将MAC集成进微控制器而将PHY留在片外的原因。更灵活、密度更高的芯片技术已经可以实现MAC和PHY的单芯片整合;

所以常用的CPU内部集成MAC,PHY采用独立的芯片方案,虚线内表示CPU和MAC集成在一起,PHY芯片通过MII接口与CPU上的MAC互联;

2.MAC

MAC即Media Access Control,即媒体访问控制子层协议。该协议位于OSI七层协议中数据链路层的下半部分,主要负责控制与连接物理层的物理介质。在发送数据的时候,MAC协议可以事先判断是否可以发送数据,如果可以发送将给数据加上一些控制信息,最终将数据以及控制信息以规定的格式发送到物理层;在接收数据的时候,MAC协议首先判断输入的信息并是否发生传输错误,如果没有错误,则去掉控制信息发送至LLC层。该层协议是以太网MAC由IEEE-802.3以太网标准定义。

3.PHY芯片

PHY是物理接口收发器,它实现物理层。IEEE-802.3标准定义了以太网PHY。包括MII/GMII(介质独立接口)子层,PCS(物理编码子层),PMA(物理介质附加)子层,PMD(物理介质相关)子层,MDI子层。它符合IEEE-802.3k中用于10BaseT(第14条)和100BaseTX(第24条和第25条)的规范。

PHY在发送数据的时候,收到MAC过来的数据(对PHY来说,没有帧的概念,对它来说,都是数据而不管什么地址,数据还是CRC。对于100BaseTX因为使用4B/5B编码,每4bit就增加1bit的检错码),然后把并行数据转化为串行流数据,再按照物理层的编码规则把数据编码,再变为模拟信号把数据送出去。收数据时的流程反之。

4.MII接口

4.1简介

MII即“媒体独立接口”,也叫“独立于介质的接口”。它是IEEE-802.3定义的以太网行业标准。它包括一个数据接口,以及一个MAC和PHY之间的管理接口。RMII全称为“简化的媒体独立接口”,是IEEE-802.3u标准中除MII接口之外的另一种实现。

4.2 MII接口详解

MII支持10M和100M的操作,单向传输的数据线有4根,整个接口由14根线组成。

MII_TX_CLK:发送数据使用的时钟信号,对于10M位/s的数据传输,此时钟为2.5MHz,对于100M位/s的数据传输,此时钟为25MHz。

MII_RX_CLK:接收数据使用的时钟信号,对于10M位/s的数据传输,此时钟为2.5MHz,对于100M位/s的数据传输,此时钟为25MHz。

MII_TX_EN:传输使能信号,此信号必需与数据前导符的起始位同步出现,并在传输完毕前一直保持。

MII_TXD[3:0]:发送数据线,每次传输4位数据,数据在MII_TX_EN信号有效时有效。MII_TXD[0]是数据的最低位,MII_TXD[3]是最高位。当MII_TX_EN信号无效时,PHY忽略传输的数据。

MII_CRS:载波侦听信号,仅工作在半双工模式下,由PHY控制,当发送或接收的介质非空闲时,使能此信号。 PHY必需保证MII_CRS信号在发生冲突的整个时间段内都保持有效,不需要此信号与发送/接收的时钟同步。

MII_COL:冲突检测信号,仅工作在半双工模式下,由PHY控制,当检测到介质发生冲突时,使能此信号,并且在整个冲突的持续时间内,保持此信号有效。此信号不需要和发送/接收的时钟同步。

MII_RXD[3:0]:接收数据线,每次接收4位数据,数据在MII_RX_DV信号有效时有效。MII_RXD[0]是数据的最低位,MII_RXD[3]是最高位。当MII_RX_EN无效,而MII_RX_ER有效时,MII_RXD[3:0]数据值代表特定的信息(请参考表194)。

MII_RX_DV:接收数据使能信号,由PHY控制,当PHY准备好数据供MAC接收时,使能该信号。此信号必需和帧数据的首位同步出现,并保持有效直到数据传输完成。在传送最后4位数据后的第一个时钟之前,此信号必需变为无效状态。为了正确的接收一个帧,有效电平不能滞后于数据线上的SFD位出现。

MII_RX_ER:接收出错信号,保持一个或多个时钟周期(MII_RX_CLK)的有效状态,表明MAC在接收过程中检测到错误。具体错误原因需配合MII_RX_DV的状态及MII_RXD[3:0]的数据值。

MII 发送时序图如图所示:

                                  

MII 接收时序图如图所示:

4.3 RMII接口

 RMII 接口示意图如图所示,共有 8 根信号线。 RMII 为 MII 的简化版,信号线数量减半。

TXD/RXD 为数据发送/接收信号,分别有两根信号线, 为 MII 的一半;

TX_EN 同 MII 一致;

RX_ER 同 MII 一致;

CLK_REF 为 50MHz 参考时钟, 可以由 PHY 提供,也可以由 MAC 提供;

CRS_DV 为 CRS 与 RX_DV 联合的信号。

4.4GMII 接口

  GMII 接口示意图如图 1-6 所示, 共有 24 根信号线。相比于 MII, GMII 可支持千兆速率传输, 通常 GMII 接口可以兼容 MII 接口。

GMII 大部分信号线与 MII 一致,区别在于:

TX_CLK 发送参考时钟由 MAC 提供, RX_CLK 接收参考时钟由 PHY 提供,两者均为 125MHz;

TXD/RXD 发送/接收数据信号分别为 8 根信号线,为 MII 的两倍。

4.5 RMII、GMII、RGMII和MII的关联与区别

MII的一个缺点是:它的每个端口用的信号线太多,如果一个8端口的交换机要用112根线,32端口就要用到448根线,如果按个接口做交换机,不太现实,所以现代交换机会采用其它一些从MII简化而来的标准,如RMII、SMII、GMII等。

RMII是简化的MII接口,在数据的收发上它比MII接口少了一倍的信号线;和MII一样,RMII支持10M的总线接口速度。

GMII是千兆网的MII接口,RGMII表示简化了的GMII接口。

RGMII接口减少了MAC与PHY之间的走线数量,通过在参考时钟的上升/下降沿同时采样及信号复用得以实现。

下表是RTL8211的RGMII接口的引脚列表:

SMII是由思科提出的一种媒体接口,它有比RMII更少的信号线数目,S表示串行的意思。因为它只用一根信号线传送发送数据,一根信号线传输接受数据,所以在时钟上为了满足100的需求,它的时钟频率很高,达到了125兆,为什么用125兆,是因为数据线里面会传送一些控制信息。SMII一个端口仅用4根信号线完成100信号的传输,比起RMII差不多又少了一倍的信号线。SMII在工业界的支持力度是很高的。同理,所有端口的数据收发都公用同一个外部的125M时钟。

介绍了好几种MII接口,想必有点混乱了,下表简单总结了一下各种MII接口的特征:

4.6MDIO 接口

MDIO 全称是Management Data Input/Output,直译过来就是管理数据输入输出接口,是一个简单的两线串行接口,一根MDIO 数据线,一根MDC 时钟线。    驱动程序可以通过MDIO 和MDC 这两根线访问PHY 芯片的任意一个寄存器。MDIO 接口支持多达32 个PHY。同一时刻内只能对一个PHY 进行操作,那么如何区分这32 个PHY 芯片呢?和IIC 一样,使用器件地址即可。同一MDIO 接口下的所有PHY 芯片,其器件地址不能冲突,必须保证唯一,具体器件地址值要查阅相应的PHY 数据手册。

因此,MAC 和外部PHY 芯片进行连接的时候主要是MII/RMII 和MDIO 接口,另外可能还需要复位、中断等其他引脚。

4.7.linux下PHY控制器驱动

    PHY控制器驱动和SPI/I2C类似,控制器功能是实现具体的读写功能。实现方法有两种(与I2C类似):

(1)直接调用CPU的MDIO控制器(直接调用CPU对应的寄存器)

(2)通过GPIO/外围soc模拟MDIO时序的方式

PHY的控制器一般被描述为mdio_bus平台

注:这是一个设备,等同于SPI/I2C中的master设备;和总线、驱动、设备中的bus不一样。既然是平台设备,那么设备树中有可以被解析为平台的设备节点,也有对应的平台设备驱动。

5.以太网变压器

5.1变压器作用

(1).耦合差分信号,抗干扰能力更强

(2).变压器隔离网线端不同设备的不同电平,隔离直流信号

5.2网络变压器一般是由差模线圈,变压器以及中心抽头组成。如下示意:

其中初级中心抽头的接法需要根据PHY芯片来决定,电压驱动的就要接电源,电流驱动直接接个电容到地即可。还需要注意的是有的变压器中间抽头是独立的有的是收发合并在一起的,设计的时候需要注意,为了防止初版硬件设计错误,可以兼容设计。

6.RJ45

以太网信号最终是通过RJ45接头接入网络的。

RJ是Registered Jack的缩写,意思是“注册的插座”。在FCC(美国联邦通信委员会标准和规章)中RJ是描述公用电信网络的接口,计算机网络的RJ45是标准8位模块化接口的俗称。

关于接头引脚定义,目前存在两种标准:T568A和T568B(最通用)。这两者的主要区别是橙色和绿色双绞线进行了交换,如下图所示:

设计这两种标准只是在线缆颜色上有所区别,目的是在线缆侧实现交叉互连。网络直通线常用于异种网络之间的互连(比如计算机交换机之间),交叉线常用于同种网络之间的互联(比如计算机与之间)。不过现在PHY芯片大部分具有自动交叉(auto MDI-X)的能力,只需要直连即可。不同网络速率及网络介质下引脚作用也不相同,如下图示意:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1883114.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

安卓应用开发学习:通过腾讯地图SDK实现定位功能

一、引言 这几天有些忙,耽误了写日志,但我的学习始终没有落下,有空我就会研究《 Android App 开发进阶与项目实战》一书中定位导航方面的内容。在我的手机上先后实现了“获取经纬度及地理位置描述信息”和“获取导航卫星信息”功能后&#x…

Zookeeper笔记1

一、介绍 Zookeeper 是一个开源的分布式的,为分布式框架提供协调服务的 Apache 项目。是一个基于观察者模式设计的分布式服务管理框架,它负责存储和管理大家都关心的数据,然后接受观察者的注册,一旦这些数据的状态发生变化&#…

基于路径长度的样条插补算法(自动驾驶和路径跟踪控制适用)

以前在做车辆跟踪控制的时候发现在针对有多个X和多个Y对应的路径插补时候,总是报错,因为MATLAB里面的interp1插补函数它要求x要唯一对应一个y,当路径以单独的x或者y来求插补时候的时候就报错。由于在使用Matlab的interp1函数进行插值时&#…

暴雨来袭,陈赫家变“水帘洞”网友:赫哥滴滴打船吗?

在魔都上海,一场突如其来的暴雨 不仅让街道变成了河流,还悄悄上演了一场现实版的“水帘洞”奇遇 而这场奇遇的主角,竟然是喜剧界的明星——陈赫! 这天,乌云密布,电闪雷鸣 魔都的天空仿佛被捅了个窟窿 雨…

为什么我的Skype点数不见了?如何重新激活 Skype 点数?

您超过180天没有使用过点数打电话功能,点数暂时封存在您的账户里面,需要您手动激活(目前必须要登录网页版skype) 可再次使用。 如何重新激活 Skype 点数? 登录到你的帐户 . 选择 重新激活信用额度 .注意: …

中医药文化传承进校园活动授牌仪式在石家庄主办举办

青春闪“药”,我心向党。2024年6月30日,由河北省药品医疗器械检验研究院主办的”中医药文化传承进校园活动在石家庄主办。来自河北省各地24所学校作为示范学校现场接牌。 河北省科协科普部部长范玉鑫、河北省教育厅学位管理与研究生处副处长耿立艳、河北…

Skipfish一键扫描网站漏洞(KALI工具系列三十四)

目录 1、KALI LINUX 简介 2、Skipfish工具简介 3、信息收集 3.1 目标IP 3.2 kali的IP 4、操作步骤 4.1创建目录 4.2开始扫描 4.3 配置扫描 4.4 指定范围 4.5 查看扫描结果 5、总结 1、KALI LINUX 简介 Kali Linux 是一个功能强大、多才多艺的 Linux 发行版 &#xf…

基于深度学习的水果蔬菜检测识别系统(Python源码+YOLOv8+Pyqt5界面+数据集+训练代码 MX_004期)

系统演示: 基于深度学习的水果蔬菜检测识别系统 界面图: 技术组成: 深度学习模型(YOLOv8): YOLOv8是基于YOLO系列的目标检测模型,具有较快的检测速度和良好的准确率,适合于实时应用场…

DP:子数组问题

文章目录 引言子数组问题介绍动态规划的基本概念具体问题的解决方法动态规划解法:关于子数组问题的几个题1.最大子数组和2.环形子数组的最大和3.乘积最大子数组4.乘积为正数的最长子数组长度5.等差数列划分 总结 引言 介绍动态规划(DP)在解决…

6.x86游戏实战-C++实现跨进程读写-通过基址读取人物状态标志位

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 本次游戏没法给 内容参考于:微尘网络安全 上一个内容:5.x86游戏实战-CE定位基地址 上一个内容找出了人物状态标志位的基址&#xff0…

电脑录音软件哪个好?7款录制音频工具大盘点,赶快学起来!(2024)

也许你渴望提取你最喜欢的节目的背景音乐,或者你希望录制自己的声音制作教程。如果是这样,你就需要一款优秀的电脑录音软件,来帮助你捕捉任何你想要的声音,而且不会损失音质。目前市场上存在着大量的录制音频工具,面对…

C++ | Leetcode C++题解之第207题课程表

题目&#xff1a; 题解&#xff1a; class Solution { private:vector<vector<int>> edges;vector<int> indeg;public:bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {edges.resize(numCourses);indeg.resize(numCo…

创意无界:探索国产创成式填充的无限潜力

在数字艺术与设计的世界中&#xff0c;创新技术不断涌现&#xff0c;而"创成式填充"无疑是其中的一颗璀璨新星。今天米兔要安利的这款国产ps插件-StartaAI拥有强大的AI功能&#xff0c;其AI扩图和局部重绘更是成为PS创成式填充的国产平替。 什么是创成式填充&#x…

clion开发51 没有创建成功可能是Clion版本问题

安装插件 PlatformlO for CLion 进入这个网站下载get-platformio.py https://docs.platformio.org/en/latest/core/installation/methods/installer-script.html#local-download-macos-linux-windows 点击 Installation Methods 选择 Local Download (macOS/Linux/Windows) 点…

如何评价CSS框架TailwindCSS?

端午三天&#xff0c;你们在放假&#xff0c;而我&#xff0c;一个人躲在家里&#xff0c;苦练 tailwindcss。 我在准备这样一个学习项目&#xff0c;它与传统的文章/视频类学习不同&#xff0c;我会在教程中内置大量的可交互案例&#xff0c;提供沉浸式的学习体验&#xff0c…

Vue组件化、单文件组件以及使用vue-cli(脚手架)

文章目录 1.Vue组件化1.1 什么是组件1.2 组件的使用1.3 组件的名字1.4 嵌套组件 2.单文件组件2.1 vue 组件组成结构2.1.1 template -> 组件的模板结构2.1.2 组件的 script 节点2.1.3 组件的 style 节点 2.2 Vue组件的使用步骤2.2.1 组件之间的父子关系2.2.2 使用组件的三个步…

通过nginx去除 api url前缀 并保持后面剩余的url不变向后台请求

如 我前台浏览器向后台请求的接口是 http://127.0.0.1:5099/api/sample/sample/getbuttonlist 实际的请求接口传向 http://192.168.3.71:5099/sample/sample/getbuttonlist 方法是向config中加入下面这样一个server server {listen 5099;location /api/ {rewrite ^/a…

【Python机器学习】模型评估与改进——打乱划分交叉验证

打乱划分交叉验证是一种非常灵活的交叉验证策略。 在打乱划分交叉验证中&#xff0c;每次划分为训练集取样train_size个点&#xff0c;为测试集取样test_size个不相交的点。将这一划分方法重复n_iter次。 举例&#xff1a; import matplotlib.pyplot as plt import mglearnm…

mysql wrnning Difficult to find free blocks in the buffer pool解决方法

mysql [InnoDB] Difficult to find free blocks in the buffer pool (140397 search iterations)! 我使用的是mysql8,。 原因&#xff1a;这种情况&#xff0c;多半出现在别人在非常大的写入&#xff0c;或者百万级的查询中。 解决方式&#xff0c;centos7在线安装的mysql&am…

软件测试面试题常见一百道【含答案】

1、问&#xff1a;你在测试中发现了一个bug&#xff0c;但是开发经理认为这不是一个bug&#xff0c;你应该怎样解决? 首先&#xff0c;将问题提交到缺陷管理库里面进行备案。 然后&#xff0c;要获取判断的依据和标准&#xff1a; 根据需求说明书、产品说明、设计文档等&am…