分享一个用于深入分析【大模型LLM】工作原理的工具

news2024/11/18 4:33:46

背景

LLM Transparency Tool 是一个用于深入分析和理解大型语言模型(LLM)工作原理的工具,旨在增加这些复杂系统的透明度。它提供了一个交互式界面,用户可以通过它观察、分析模型对特定输入(prompts)的反应,以及模型内部的决策过程。

LLM Transparency Tool的主要功能包括:

  • 选择模型和提示,并运行推理:用户可以选择一个已经集成的语言模型,并给这个模型提供一个提示(prompt),工具会显示模型是如何处理这个提示的。
  • 浏览贡献图:这个功能允许用户社交从模型生成的token开始构建图表,通过调整贡献门槛来过滤信息。
  • 选择任何模块后的token表示:用户可以查看每个处理块之后任意token的内部表示。
  • 查看输出词汇表的投影:对于选中的表示,工具可以显示它是如何影响模型输出词汇的选择的,包括哪些token被之前的块促进或抑制了。
  • 可交互的图形元素:包括连接线(展示了贡献的注意力头信息)、当选中连接线时显示的头部信息、前馈网络块(FFN blocks)、以及选中FFN块时的神经元等。

使用场景

  • 模型分析与调优:研究人员或开发者在开发或优化语言模型时,可以使用此工具来观察模型对特定输入的处理过程,找出模型的优点与不足。
  • 教育与学习:对深度学习和NLP(自然语言处理)感兴趣的学生或爱好者可以通过这个工具来加深对大型语言模型工作原理的理解。
  • 算法透明度与可解释性:在追求算法透明度和可解释AI的推进中,该工具可作为分析工具的一种,帮助解释模型的决策依据

项目说明

  • 项目地址:https://github.com/facebookresearch/llm-transparency-tool
  • 项目依赖:https://github.com/TransformerLensOrg/TransformerLens
  • 论文地址:https://arxiv.org/pdf/2403.00824.pdf
  • Transparency Tool是基于TransformerLens开发的,TransformerLens是一个专注于生成语言模型(如GPT-2风格的模型)的可解释性的库。其核心目标是利用训练好的模型,通过分析模型的内部工作机制,来提供对模型行为的深入理解
  • 凡是TransformerLens支持的模型,Transparency Tool都能支持。对于TransformerLens不支持的模型,需要实现自己的TransparentLlm类

部署

# download
git clone git@github.com:facebookresearch/llm-transparency-tool.git
cd llm-transparency-tool

# install the necessary packages
conda env create --name llmtt -f env.yaml
# install the `llm_transparency_tool` package
pip install -e .

# now, we need to build the frontend
# don't worry, even `yarn` comes preinstalled by `env.yaml`
cd llm_transparency_tool/components/frontend
yarn install
yarn build

  • 模型配置
{
    "allow_loading_dataset_files": true,
    "preloaded_dataset_filename": "sample_input.txt",
    "debug": true,
    "models": {
        "": null,
        "/root/.cache/modelscope/hub/AI-ModelScope/gpt2-medium": null,  // 额外添加模型
        "/root/.cache/Qwen1.5-14B-Chat/": null, // 额外添加模型
        "gpt2": null,
        "distilgpt2": null,
        "facebook/opt-125m": null,
        "facebook/opt-1.3b": null,
        "EleutherAI/gpt-neo-125M": null,
        "Qwen/Qwen-1_8B": null,
        "Qwen/Qwen1.5-0.5B": null,
        "Qwen/Qwen1.5-0.5B-Chat": null,
        "Qwen/Qwen1.5-1.8B": null,
        "Qwen/Qwen1.5-1.8B-Chat": null,
        "microsoft/phi-1": null,
        "microsoft/phi-1_5": null,
        "microsoft/phi-2": null,

        "meta-llama/Llama-2-7b-hf": null,
        "meta-llama/Llama-2-7b-chat-hf": null,

        "meta-llama/Llama-2-13b-hf": null,
        "meta-llama/Llama-2-13b-chat-hf": null,

        "gpt2-medium": null,
        "gpt2-large": null,
        "gpt2-xl": null,

        "mistralai/Mistral-7B-v0.1": null,
        "mistralai/Mistral-7B-Instruct-v0.1": null,
        "mistralai/Mistral-7B-Instruct-v0.2": null,

        "google/gemma-7b": null,
        "google/gemma-2b": null,

        "facebook/opt-2.7b": null,
        "facebook/opt-6.7b": null,
        "facebook/opt-13b": null,
        "facebook/opt-30b": null
    },
    "default_model": "",
    "demo_mode": false
}


  • 适配更多模型
    在这里插入图片描述
  • 启动
streamlit run llm_transparency_tool/server/app.py -- config/local.json

  • 效果
    在这里插入图片描述

原理

引言

  • Transformer架构:作者首先指出,当前最先进的语言模型(LMs)大多基于Transformer架构,这是一种深度学习模型,广泛应用于自然语言处理任务中。Transformer模型通过自注意力机制(self-attention)和前馈网络(feed-forward networks)处理语言信息。

  • 信息流的概念:在Transformer模型中,每个token的表示(representation)会随着网络层的加深而不断演化。这种演化过程可以视为信息流,即信息在模型内部的流动和转换。作者将这种信息流比作一个图,其中节点代表token的表示,边代表模型内部的计算操作。

  • 信息流的重要性:尽管在模型的前向传播过程中,所有的计算路径都存在,但对于特定的预测任务,只有一部分计算是重要的。作者强调了识别和提取这些重要信息流路径的重要性,因为这有助于我们更好地理解模型是如何做出特定预测的。

  • 现有方法的局限性:论文提到了现有的基于激活补丁(activation patching)的方法,这种方法通过替换模型内部的激活值来研究模型的行为。然而,这种方法存在局限性,包括需要人为设计预测模板、分析仅限于预定义模板、以及在大规模模型中不切实际等。

  • 提出的新方法:为了克服现有方法的局限性,作者提出了一种新的方法来自动构建信息流图,并提取对于每个预测最重要的节点和边。这种方法不需要人为设计的模板,可以高效地应用于任何预测任务,并且只需单次前向传播即可完成。

  • 实验和结果:在引言的最后,作者简要提到了他们使用Llama 2模型进行的实验,展示了新方法的有效性。他们发现某些注意力头(如处理前一个token的头和子词合并头)在整体上很重要,并且模型在处理相同词性的token时表现出相似的行为模式。

  • 贡献总结:作者总结了他们的贡献,包括提出了一种新的解释Transformer LMs预测的方法,与现有方法相比,新方法具有更广泛的适用性、更高的信息量和更快的速度

信息流路径的提取

实现步骤
  • 构建信息流图:首先,将模型内部的计算过程表示为一个图,其中节点代表token的表示,边代表模型内部的操作,如注意力头、前馈层等。

  • 自顶向下追踪:从预测结果的节点开始,自顶向下地追踪网络中的信息流动。在每一步中,只保留对当前预测结果有重要影响的节点和边。

  • 设置重要性阈值:通过设置一个阈值τ,只有当边的重要性高于这个阈值时,才会将其包含在最终的信息流路径图中。

  • 利用属性方法:与传统的激活补丁方法不同,作者使用属性(attribution)方法来确定边的重要性。这种方法不需要人为设计对比模板,可以更高效地识别对预测结果有实质性影响的信息流动路径。

  • 计算边的重要性:根据ALTI(Aggregation of Layer-Wise Token-to-Token Interactions)方法,计算每个边对于节点(即token表示的总和)的贡献度。贡献度与边向量与节点向量的接近程度成正比。

意义
  • 提高透明度:通过提取信息流路径,可以更清晰地看到模型内部是如何进行决策的,提高了模型的透明度。

  • 优化模型设计:理解信息流动的模式可以帮助研究者发现模型设计中的不足之处,从而进行优化。

  • 解释预测结果:信息流路径提供了一种方式来解释模型的预测结果,有助于理解模型为何做出特定的预测。

  • 发现模型组件的专门化:通过分析信息流路径,可以识别出模型中专门针对特定领域或任务的组件。

  • 提高模型的可靠性:通过识别和强化重要的信息流动路径,可以提高模型在面对复杂或模糊输入时的可靠性

如何理解模型行为
  • 注意力头的作用:通过分析哪些注意力头在信息流路径中起关键作用,可以理解模型在处理特定类型的输入时依赖哪些信息。

  • 信息流动模式:观察信息在模型内部如何流动,可以帮助我们理解模型是如何处理和整合不同部分的信息来做出预测的。

  • 模型的泛化能力:通过分析信息流路径,可以评估模型在不同任务或不同领域中的泛化能力。

  • 模型的脆弱性:识别信息流路径中的脆弱环节,可以帮助我们理解模型可能在哪些情况下失效,并采取措施进行改进。

  • 模型的自我修复能力:通过比较信息流路径在正常和干预(如激活补丁)情况下的差异,可以研究模型的自我修复能力。

参数解释

在这里插入图片描述

在这里插入图片描述

  • y轴表示 模型层
  • 横轴表示对应得token
  • 每次计算从L0依次向上计算,并经过attention计算在经过ffn泛化,每次都得到最重要得 top k个token
怎么理解Promoted Tokens

L39 ffn

  • 在Transformer架构中,"l39 ffn"通常指的是位于模型第39层(layer 39)的前馈网络(feed-forward network,简称FFN)。以下是对"l39 ffn"的详细解释:

  • Layer(层):在深度学习模型中,尤其是Transformer模型,信息会通过多个层次(layers)进行处理。每一层都会对输入数据进行一些变换,以提取特征或进行抽象表示。

  • Feed-Forward Network(前馈网络):FFN是Transformer模型中的一种组件,通常位于每个注意力(attention)层之后。它由两个线性变换组成,中间夹着一个非线性激活函数(如ReLU)。FFN的作用是对注意力层的输出进行进一步的非线性变换,增加模型的表达能力。

  • Layer 39(第39层):在某些大型语言模型中,可能会有数十层的深度结构。"l39"指的是模型中的第39层,这意味着信息已经通过了前38层的处理,并且在第39层中进一步被变换和抽象。

  • FFN的作用:在第39层的FFN中,模型会对从第38层传递来的信息进行处理。这个过程包括:

    • 一个线性变换,将输入映射到一个更高或更低维度的空间。
      应用一个非线性激活函数,通常是ReLU,以引入非线性特性,帮助模型学习复杂的模式。
    • 另一个线性变换,将激活后的结果映射回原始维度或另一个特定的维度。
  • 理解FFN的重要性:FFN是Transformer模型中不可或缺的一部分,它允许模型在每个层级上进行更复杂的特征转换。通过这种方式,模型可以学习到更加抽象和高级的语言特征,这对于处理复杂的语言任务至关重要。

  • 在模型解释性中的作用:在论文中提到的信息流路径提取方法中,FFN的重要性也可能被评估。研究者可能会分析第39层FFN对最终预测的贡献,以及它如何与同一层次的注意力机制协同工作。

怎么理解Top Tokens
  • L8 T0 after attn: 表示第8层经过attention 计算得到预测token
  • L8 T0 after ffn:表示第8层经过ffn 泛化 计算得到预测token,使模型表达能力更强了

大模型如何入坑?

想要完全了解大模型,你首先要了解市面上的LLM大模型现状,学习Python语言、Prompt提示工程,然后深入理解Function Calling、RAG、LangChain 、Agents等

很多人不知道想要自学大模型,要按什么路线学?

所有大模型最新最全的资源,包括【学习路线图】、【配套自学视频+pdf】、【面试题】这边我都帮大家整理好了通过下方卡片获取哦!

《人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取!

在这里插入图片描述

1.成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。
在这里插入图片描述

2.视频教程
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,其中一共有21个章节,每个章节都是当前板块的精华浓缩。

在这里插入图片描述

3.LLM
大家最喜欢也是最关心的LLM(大语言模型)

在这里插入图片描述

发展前景:大模型在自然语言处理、图像识别、语音识别等领域具有广泛的应用。随着大数据时代的到来,大模型技术将继续发展,为程序员提供更多的发展机会。

技能要求:要成为一名优秀的大模型程序员,需要具备以下技能:

  • 掌握深度学习相关知识,如神经网络、卷积神经网络等;
  • 熟悉编程语言,如Python、C++等;
  • 了解大数据处理技术,如Hadoop、Spark等;
  • 具备良好的数学和统计学基础,以便更好地理解和优化大模型。
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1882630.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【MySQL基础篇】函数及约束

1、函数 函数是指一段可以直接被另一段程序程序调用的程序或代码。 函数 - 字符串函数 MySQL中内置了很多字符串函数,常用的几个如下: 函数功能CONCAT(S1,S2,...,Sn)字符串拼接,将S1,S2,...,Sn拼接成一个字符串LOWER(str)将字符串str全部…

DDD学习笔记四

领域模型的构建 基础领域模型的基本组成有名称、属性、关联、职责、事件和异常 发掘领域概念3种策略: 1)学习已有系统,重用已有模型 2)使用分类标签。分类标签来源于领域,需要我们研究一些资料并做一些提炼。从采用5W…

解决 prettier/prettier 和 indent 冲突问题和一点简单思考

用过 prettier 的都知道,经常会遇到 prettier 与 eslint 的某些规则冲突的情况。在之前的一篇文章中,我简单地描述过怎么搭建起应用 eslint/prettier 的基本配置,也提到了怎么解决 prettier 与 eslint 的一些冲突问题。 其中有这么一段话&am…

C语言 | Leetcode C语言题解之第202题快乐数

题目: 题解: //计算的过程函数,我没重点讲,很简单看一下代码就好了 int getSum(int n) {int sum 0;while (n) {sum (n % 10) * (n % 10);n / 10;}return sum; }bool isHappy(int n){int sum getSum(n);int hash[820] {0};whi…

寒武纪实现高维向量的softmax进阶优化和库函数对比

关于寒武纪编程可以参考本人之前的文章添加链接描述,添加链接描述,添加链接描述 实验证明,axis=0和axis=-1的时候,手写softmax速度可以和库函数媲美,甚至于更甚一筹。 src/softmax.mlu #include <bang.h> #include

OPCUA相关概念和KepServer OPCUA连接PLC

文章背景 项目中需要使用OPC UA 来读取PLC的点位。本文简单介绍了OPC UA和使用KepServer软件连接PLC并读点。OPC相关概念 OPC之前&#xff0c;软件开发需要写大量驱动程序去连接设备&#xff0c;设备上的一个硬件改变&#xff0c;应用程序都有可能需要重写&#xff0c;不同设备…

Facebook助力中东地区博弈游戏广告营销新视界

Facebook助力中东地区博弈游戏广告营销新视界 中东地区&#xff0c;作为世界上充满活力和潜力的游戏市场之一&#xff0c;近年来&#xff0c;Slots游戏在该地区的热度持续攀升。众多游戏开发商和广告主纷纷寻求有效的推广方式&#xff0c;以吸引更多的潜在用户。在这个过程中&…

在自定义数据集上对 YOLOv10 模型进行微调以检测肾结石

对 YOLOv10 模型进行微调以增强肾结石检测,可将诊断时间从每份报告 15-25 分钟显著缩短至每秒处理约 150 份报告。这项研究面向医学研究人员、医疗保健专业人士和 AI 公司,通过以数据为中心的技术,无需改变模型架构,即可获得94.1 的 mAP50 。 NMS 免费培训:它真的有效吗?…

11083 旅游背包(优先做)

这个问题可以使用动态规划来解决。我们可以定义一个三维数组dp&#xff0c;其中dp[i][j][k]表示前i种物品&#xff0c;总体积不超过j&#xff0c;总重量不超过k的最大价值。 我们可以使用四重循环来填充这个数组。外层循环遍历所有的物品&#xff0c;第二层循环遍历所有可能的…

C++视觉开发 一.OpenCV环境配置

一.OpenCV安装环境配置 1.OpenCV安装 &#xff08;1&#xff09;下载 官方下载链接&#xff1a;http://opencv.org/releases 这边选择需要的版本&#xff0c;我是在windows下的4.9.0。&#xff08;科学上网下载很快&#xff0c;否则可能会有点慢&#xff09; (2)安装 双击下…

卢森堡-海外媒体发稿:新闻媒体宣发报道超给力

卢森堡高卢期刊gauljournal 卢森堡高卢期刊gauljournal自成立以来&#xff0c;一直致力于报道真实、客观的新闻&#xff0c;为读者提供最全面、准确的信息。多年来&#xff0c;该期刊在海内外媒体宣发方面取得了极大的成就&#xff0c;其报道在国际媒体上的曝光率非常高&#…

20240701每日后端------------java启动JVM参数配置说明Parameters -D, -X, -XX

主题 JVM有很多参数&#xff0c;当我们通过命令行启动Java程序时&#xff08;例如&#xff0c; java -jar app.jar&#xff09; 我们经常指定各种参数选项。很多人对为什么有时我们使用 -D &#xff0c;有时我们使用 -X &#xff0c;偶尔我们使用 -XX 感到困惑。 名词解释 …

短剧挂载推广教程,短剧项目怎么分销推广?如何入驻平台当推广达人?达人推广的方式是怎么样的

目录 一、短剧怎么做&#xff1f; 二、在哪找资源挂?怎么挂? 1、在哪找资源挂? 2、怎么挂? 三、有哪些短剧看剧平台或者分销平台? 1&#xff1a;短剧看剧小程序怎么入驻当达人? 2&#xff1a;短剧cps分销小程序怎么入驻当达人? 一、短剧怎么做&#xff1f; 想要当…

Linux常用工具使用方式

目录 常用工具&#xff1a; 安装包管理工具&#xff1a; 查找含有关键字的软件包 安装软件 安装文件传输工具 安装编辑器 C语言编译器 C编译器 安装调试器 安装项目版本管理工具 cmake 卸载软件 安装jsoncpp 安装boost库 安装mariadb 安装tree&#xff08;让目录…

多语言跨境商城系统怎么选择

随着全球化的推进和电子商务的蓬勃发展&#xff0c;跨境电商已经成为了一个不可忽视的商机。不同国家和地区的语言和文化差异给跨境电商带来了一定的挑战。为了顺利运营跨境电商平台&#xff0c;选择一款适合的多语言跨境商城系统至关重要。但在众多系统中选择合适的一款&#…

探讨DC/AC电源模块为绿色能源应用提供可靠的转换解决方案

BOSHIDA 探讨DC/AC电源模块为绿色能源应用提供可靠的转换解决方案 DC/AC电源模块是一种能够将直流电源转换为交流电源的装置。随着绿色能源的不断发展和应用&#xff0c;DC/AC电源模块在可再生能源、电动车辆、太阳能发电等领域中扮演着重要的角色。本文将着重探讨DC/AC电源模…

3DMAX折纸插件FoldPoly使用方法详解

3DMAX折纸插件FoldPoly使用教程 3DMAX折纸插件FoldPoly&#xff0c;用于挤出可编辑多边形的边&#xff08;边界&#xff09;并可旋转&#xff08;折叠&#xff09;新生成的面&#xff0c;创建类似手工折纸以及纸箱包装盒的建模效果。 【版本要求】 3dMax2014 - 2025&#xff…

2024最新!将mysql的数据导入到Solr

Solr导入mysql的数据 如何安装导入数据前准备配置Solr的Jar包以及Mysql驱动包1.1、将solr-8.11.3\dist下的两个包进行移动1.2、将mysql-connect包也移动到该位置1.3、重启Solr项目 配置xml2.1、第一步我们需要创建核心2.2、第二步修改xml(这里是结合19年的教程)2.3、 创建data-…

Soul社交元宇宙智能连接安全相伴,打造值得用户信赖的社交环境

随着人工智能技术的快速发展,社交平台正在迎来一场革命性的变革。从智能推荐到情感分析,社交平台通过深度学习和数据分析为用户提供更加个性化、智能化的社交体验。与此同时,数字时代人们的安全意识正逐渐增强。为此,一个智能、安全的社交平台成为人们迫切需要。而新型社交平台…

Baidu Comate专业版90天免费试用,上班摸鱼好帮手

Baidu Comate专业版&#xff0c;扫描图中二维码或者点击链接下载安装&#xff0c;即可获得Baidu Comate专业版90天免费试用&#xff0c;支持idea、vscode、eclispe。它结合了百度大数据和文心大模型&#xff0c;为开发者们提供了更智能、更高效的编程体验&#xff0c;上班摸鱼好…