JUC工具类: Semaphore详解

news2025/1/13 3:36:43

Semaphore底层是基于AbstractQueuedSynchronizer来实现的。Semaphore称为计数信号量,它允许n个任务同时访问某个资源,可以将信号量看做是在向外分发使用资源的许可证,只有成功获取许可证,才能使用资源。@立刀旁

目录

# 带着BAT大厂的面试问题去理解

# Semaphore源码分析

# 类的继承关系

# 类的内部类

# 类的内部类 - Sync类

# 类的内部类 - NonfairSync类

# 类的内部类 - FairSync类

# 类的属性

# 类的构造函数

# 核心函数分析 - acquire函数

# 核心函数分析 - release函数

# Semaphore示例

# 更深入理解

# 单独使用Semaphore是不会使用到AQS的条件队列的

# 场景问题

# semaphore初始化有10个令牌,11个线程同时各调用1次acquire方法,会发生什么?

# semaphore初始化有10个令牌,一个线程重复调用11次acquire方法,会发生什么?

# semaphore初始化有1个令牌,1个线程调用一次acquire方法,然后调用两次release方法,之后另外一个线程调用acquire(2)方法,此线程能够获取到足够的令牌并继续运行吗?

# semaphore初始化有2个令牌,一个线程调用1次release方法,然后一次性获取3个令牌,会获取到吗?

# 参考文章


# 带着BAT大厂的面试问题去理解

提示

请带着这些问题继续后文,会很大程度上帮助你更好的理解相关知识点。@立刀旁

  • 什么是Semaphore?
  • Semaphore内部原理?
  • Semaphore常用方法有哪些? 如何实现线程同步和互斥的?
  • Semaphore适合用在什么场景?
  • 单独使用Semaphore是不会使用到AQS的条件队列?
  • Semaphore中申请令牌(acquire)、释放令牌(release)的实现?
  • Semaphore初始化有10个令牌,11个线程同时各调用1次acquire方法,会发生什么?
  • Semaphore初始化有10个令牌,一个线程重复调用11次acquire方法,会发生什么?
  • Semaphore初始化有1个令牌,1个线程调用一次acquire方法,然后调用两次release方法,之后另外一个线程调用acquire(2)方法,此线程能够获取到足够的令牌并继续运行吗?
  • Semaphore初始化有2个令牌,一个线程调用1次release方法,然后一次性获取3个令牌,会获取到吗?

# Semaphore源码分析

# 类的继承关系

public class Semaphore implements java.io.Serializable {}

说明: Semaphore实现了Serializable接口,即可以进行序列化。

# 类的内部类

Semaphore总共有三个内部类,并且三个内部类是紧密相关的,下面先看三个类的关系。

说明: Semaphore与ReentrantLock的内部类的结构相同,类内部总共存在Sync、NonfairSync、FairSync三个类,NonfairSync与FairSync类继承自Sync类,Sync类继承自AbstractQueuedSynchronizer抽象类。下面逐个进行分析。

# 类的内部类 - Sync类

Sync类的源码如下

// 内部类,继承自AQS
abstract static class Sync extends AbstractQueuedSynchronizer {
    // 版本号
    private static final long serialVersionUID = 1192457210091910933L;
    
    // 构造函数
    Sync(int permits) {
        // 设置状态数
        setState(permits);
    }
    
    // 获取许可
    final int getPermits() {
        return getState();
    }

    // 共享模式下非公平策略获取
    final int nonfairTryAcquireShared(int acquires) {
        for (;;) { // 无限循环
            // 获取许可数
            int available = getState();
            // 剩余的许可
            int remaining = available - acquires;
            if (remaining < 0 ||
                compareAndSetState(available, remaining)) // 许可小于0或者比较并且设置状态成功
                return remaining;
        }
    }
    
    // 共享模式下进行释放
    protected final boolean tryReleaseShared(int releases) {
        for (;;) { // 无限循环
            // 获取许可
            int current = getState();
            // 可用的许可
            int next = current + releases;
            if (next < current) // overflow
                throw new Error("Maximum permit count exceeded");
            if (compareAndSetState(current, next)) // 比较并进行设置成功
                return true;
        }
    }

    // 根据指定的缩减量减小可用许可的数目
    final void reducePermits(int reductions) {
        for (;;) { // 无限循环
            // 获取许可
            int current = getState();
            // 可用的许可
            int next = current - reductions;
            if (next > current) // underflow
                throw new Error("Permit count underflow");
            if (compareAndSetState(current, next)) // 比较并进行设置成功
                return;
        }
    }

    // 获取并返回立即可用的所有许可
    final int drainPermits() {
        for (;;) { // 无限循环
            // 获取许可
            int current = getState();
            if (current == 0 || compareAndSetState(current, 0)) // 许可为0或者比较并设置成功
                return current;
        }
    }
}

说明: Sync类的属性相对简单,只有一个版本号,Sync类存在如下方法和作用如下。

# 类的内部类 - NonfairSync类

NonfairSync类继承了Sync类,表示采用非公平策略获取资源,其只有一个tryAcquireShared方法,重写了AQS的该方法,其源码如下:

static final class NonfairSync extends Sync {
    // 版本号
    private static final long serialVersionUID = -2694183684443567898L;
    
    // 构造函数
    NonfairSync(int permits) {
        super(permits);
    }
    // 共享模式下获取
    protected int tryAcquireShared(int acquires) {
        return nonfairTryAcquireShared(acquires);
    }
}

说明: 从tryAcquireShared方法的源码可知,其会调用父类Sync的nonfairTryAcquireShared方法,表示按照非公平策略进行资源的获取。

# 类的内部类 - FairSync类

FairSync类继承了Sync类,表示采用公平策略获取资源,其只有一个tryAcquireShared方法,重写了AQS的该方法,其源码如下。

protected int tryAcquireShared(int acquires) {
    for (;;) { // 无限循环
        if (hasQueuedPredecessors()) // 同步队列中存在其他节点
            return -1;
        // 获取许可
        int available = getState();
        // 剩余的许可
        int remaining = available - acquires;
        if (remaining < 0 ||
            compareAndSetState(available, remaining)) // 剩余的许可小于0或者比较设置成功
            return remaining;
    }
}

说明: 从tryAcquireShared方法的源码可知,它使用公平策略来获取资源,它会判断同步队列中是否存在其他的等待节点。

# 类的属性

public class Semaphore implements java.io.Serializable {
    // 版本号
    private static final long serialVersionUID = -3222578661600680210L;
    // 属性
    private final Sync sync;
}

说明: Semaphore自身只有两个属性,最重要的是sync属性,基于Semaphore对象的操作绝大多数都转移到了对sync的操作。

# 类的构造函数

  • Semaphore(int)型构造函数
public Semaphore(int permits) {
    sync = new NonfairSync(permits);
}

说明: 该构造函数会创建具有给定的许可数和非公平的公平设置的Semaphore。

  • Semaphore(int, boolean)型构造函数
public Semaphore(int permits, boolean fair) {
    sync = fair ? new FairSync(permits) : new NonfairSync(permits);
}

说明: 该构造函数会创建具有给定的许可数和给定的公平设置的Semaphore。

# 核心函数分析 - acquire函数

此方法从信号量获取一个(多个)许可,在提供一个许可前一直将线程阻塞,或者线程被中断,其源码如下

public void acquire() throws InterruptedException {
    sync.acquireSharedInterruptibly(1);
}

说明: 该方法中将会调用Sync对象的acquireSharedInterruptibly(从AQS继承而来的方法)方法,而acquireSharedInterruptibly方法在上一篇CountDownLatch中已经进行了分析,在此不再累赘。

最终可以获取大致的方法调用序列(假设使用非公平策略)。如下图所示。

说明: 上图只是给出了大体会调用到的方法,和具体的示例可能会有些差别,之后会根据具体的示例进行分析。

# 核心函数分析 - release函数

此方法释放一个(多个)许可,将其返回给信号量,源码如下。

public void release() {
    sync.releaseShared(1);
}

说明: 该方法中将会调用Sync对象的releaseShared(从AQS继承而来的方法)方法,而releaseShared方法在上一篇CountDownLatch中已经进行了分析,在此不再累赘。

最终可以获取大致的方法调用序列(假设使用非公平策略)。如下图所示:

说明: 上图只是给出了大体会调用到的方法,和具体的示例可能会有些差别,之后会根据具体的示例进行分析。

# Semaphore示例

下面给出了一个使用Semaphore的示例。

import java.util.concurrent.Semaphore;

class MyThread extends Thread {
    private Semaphore semaphore;
    
    public MyThread(String name, Semaphore semaphore) {
        super(name);
        this.semaphore = semaphore;
    }
    
    public void run() {        
        int count = 3;
        System.out.println(Thread.currentThread().getName() + " trying to acquire");
        try {
            semaphore.acquire(count);
            System.out.println(Thread.currentThread().getName() + " acquire successfully");
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            semaphore.release(count);
            System.out.println(Thread.currentThread().getName() + " release successfully");
        }
    }
}

public class SemaphoreDemo {
    public final static int SEM_SIZE = 10;
    
    public static void main(String[] args) {
        Semaphore semaphore = new Semaphore(SEM_SIZE);
        MyThread t1 = new MyThread("t1", semaphore);
        MyThread t2 = new MyThread("t2", semaphore);
        t1.start();
        t2.start();
        int permits = 5;
        System.out.println(Thread.currentThread().getName() + " trying to acquire");
        try {
            semaphore.acquire(permits);
            System.out.println(Thread.currentThread().getName() + " acquire successfully");
            Thread.sleep(1000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        } finally {
            semaphore.release();
            System.out.println(Thread.currentThread().getName() + " release successfully");
        }      
    }
}

运行结果(某一次):

main trying to acquire
main acquire successfully
t1 trying to acquire
t1 acquire successfully
t2 trying to acquire
t1 release successfully
main release successfully
t2 acquire successfully
t2 release successfully

说明: 首先,生成一个信号量,信号量有10个许可,然后,main,t1,t2三个线程获取许可运行,根据结果,可能存在如下的一种时序。

说明: 如上图所示,首先,main线程执行acquire操作,并且成功获得许可,之后t1线程执行acquire操作,成功获得许可,之后t2执行acquire操作,由于此时许可数量不够,t2线程将会阻塞,直到许可可用。之后t1线程释放许可,main线程释放许可,此时的许可数量可以满足t2线程的要求,所以,此时t2线程会成功获得许可运行,t2运行完成后释放许可。下面进行详细分析。

  • main线程执行semaphore.acquire操作。主要的函数调用如下图所示。

说明: 此时,可以看到只是AQS的state变为了5,main线程并没有被阻塞,可以继续运行。

  • t1线程执行semaphore.acquire操作。主要的函数调用如下图所示。

说明: 此时,可以看到只是AQS的state变为了2,t1线程并没有被阻塞,可以继续运行。

  • t2线程执行semaphore.acquire操作。主要的函数调用如下图所示。

说明: 此时,t2线程获取许可不会成功,之后会导致其被禁止运行,值得注意的是,AQS的state还是为2。

  • t1执行semaphore.release操作。主要的函数调用如下图所示。

说明: 此时,t2线程将会被unpark,并且AQS的state为5,t2获取cpu资源后可以继续运行。

  • main线程执行semaphore.release操作。主要的函数调用如下图所示。

说明: 此时,t2线程还会被unpark,但是不会产生影响,此时,只要t2线程获得CPU资源就可以运行了。此时,AQS的state为10。

  • t2获取CPU资源,继续运行,此时t2需要恢复现场,回到parkAndCheckInterrupt函数中,也是在should继续运行。主要的函数调用如下图所示。

说明: 此时,可以看到,Sync queue中只有一个结点,头节点与尾节点都指向该结点,在setHeadAndPropagate的函数中会设置头节点并且会unpark队列中的其他结点。

  • t2线程执行semaphore.release操作。主要的函数调用如下图所示。

说明: t2线程经过release后,此时信号量的许可又变为10个了,此时Sync queue中的结点还是没有变化。

# 更深入理解

# 单独使用Semaphore是不会使用到AQS的条件队列的

不同于CyclicBarrier和ReentrantLock,单独使用Semaphore是不会使用到AQS的条件队列的,其实,只有进行await操作才会进入条件队列,其他的都是在同步队列中,只是当前线程会被park。

# 场景问题

# semaphore初始化有10个令牌,11个线程同时各调用1次acquire方法,会发生什么?

答案:拿不到令牌的线程阻塞,不会继续往下运行。

# semaphore初始化有10个令牌,一个线程重复调用11次acquire方法,会发生什么?

答案:线程阻塞,不会继续往下运行。可能你会考虑类似于锁的重入的问题,很好,但是,令牌没有重入的概念。你只要调用一次acquire方法,就需要有一个令牌才能继续运行。

# semaphore初始化有1个令牌,1个线程调用一次acquire方法,然后调用两次release方法,之后另外一个线程调用acquire(2)方法,此线程能够获取到足够的令牌并继续运行吗?

答案:能,原因是release方法会添加令牌,并不会以初始化的大小为准。

# semaphore初始化有2个令牌,一个线程调用1次release方法,然后一次性获取3个令牌,会获取到吗?

答案:能,原因是release会添加令牌,并不会以初始化的大小为准。Semaphore中release方法的调用并没有限制要在acquire后调用。

具体示例如下,如果不相信的话,可以运行一下下面的demo,在做实验之前,笔者也认为应该是不允许的。。

public class TestSemaphore2 {
    public static void main(String[] args) {
        int permitsNum = 2;
        final Semaphore semaphore = new Semaphore(permitsNum);
        try {
            System.out.println("availablePermits:"+semaphore.availablePermits()+",semaphore.tryAcquire(3,1, TimeUnit.SECONDS):"+semaphore.tryAcquire(3,1, TimeUnit.SECONDS));
            semaphore.release();
            System.out.println("availablePermits:"+semaphore.availablePermits()+",semaphore.tryAcquire(3,1, TimeUnit.SECONDS):"+semaphore.tryAcquire(3,1, TimeUnit.SECONDS));
        }catch (Exception e) {

        }
    }
}

# 参考文章

  • 文章主要参考自leesf的https://www.cnblogs.com/leesf456/p/5414778.html,在此基础上做了增改。
  • https://blog.csdn.net/u010412719/article/details/94986327

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1882272.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

媒体宣发套餐的概述及推广方法-华媒舍

在今天的数字化时代&#xff0c;对于产品和服务的宣传已经变得不可或缺。媒体宣发套餐作为一种高效的宣传方式&#xff0c;在帮助企业塑造品牌形象、扩大影响力方面扮演着重要角色。本文将揭秘媒体宣发套餐&#xff0c;为您呈现一条通往成功的路。 1. 媒体宣发套餐的概述 媒体…

昇思25天学习打卡营第5天|网络与模型相关要素探讨

目录 从 MindSpore 模块中导入nn和ops 定义模型类 模型层 nn.Flatten nn.Dense nn.ReLU nn.SequentialCell nn.Softmax 模型参数 从 MindSpore 模块中导入nn和ops 将 MindSpore 整个模块引入到当前的 Python 脚本里&#xff0c;方便后续运用 MindSpore 所提供的各类功能…

森林防火气象站:守护森林安全的科技利器

在广袤无垠的森林中&#xff0c;火灾一直是威胁森林生态安全的重要因素。为了有效预防和控制森林火灾&#xff0c;科学家们不断研发新技术&#xff0c;而森林防火气象站正是这一领域的重要成果之一。其中&#xff0c;森林防火气象站凭借其强大的功能和独特的设计&#xff0c;在…

餐厅在线点餐小程序源码系统可外卖配送 带完整的安装代码包以及搭建部署教程

系统概述 在当今数字化时代&#xff0c;餐厅在线点餐小程序已成为餐饮行业的重要工具。它不仅为消费者提供了便捷的点餐体验&#xff0c;也为餐厅提高了运营效率和服务质量。小编给大家分享一款餐厅在线点餐小程序源码系统&#xff0c;该系统不仅支持在线点餐&#xff0c;还具…

Python逻辑控制语句 之 循环语句--while循环

1.while 的介绍 让指定的代码 重复 的执行。 应用场景&#xff1a; while 循环最常用的应用场景就是 让执行的代码 按照 指定的次数 重复执行 2.while 的语法 初始条件设置 # 通常是重复执行的 计数器 while 判断条件&#xff1a; # 判断计数器是否达到目标次数 条件…

博途PLC轴工艺对象随动误差监视功能

S7-1200PLC和V90总线伺服通过工艺对象实现定位控制时在组态工艺对象里有这样的随动误差监视功能介绍,关于这个功能,今天我们解读下,工艺对象组态编程可以参考下面文章链接: S7-1200PLC和V90总线伺服通过工艺对象实现定位控制(标准报文3应用)_v90工艺对象3号报文-CSDN博客文…

放弃吧!你招不到优秀AI产品经理;程序员优雅做副业指南;一人企业系统方法论(6万字);大模型训练10条黄金法则 | ShowMeAI日报

&#x1f440;日报&周刊合集 | &#x1f3a1;生产力工具与行业应用大全 | &#x1f9e1; 点赞关注评论拜托啦&#xff01; 1. 5亿条国内招聘信息&#xff0c;洞察 1639 种人类职业被AI替代的风险 2023年&#xff0c;OpenAI 发布了一篇论文 GPTs are GPTs: An Early Look at…

Tektronix泰克 AWG70001A 任意波形发生器

Tektronix泰克 AWG70001A 任意波形发生器 AWG70000A 系列任意波形发生器 (AWG) 在采样率、信号保真度和波形内存方面代表着尖端水平&#xff0c;特别适合复杂器件、系统和实验的设计、测试和操作。由于高达 50 GS/s 采样率和 10 位垂直分辨率&#xff0c;它提供了优秀的信号激…

CDS 基本原理与ADT 安装

一、ADT环境安装及介绍 安装eclipse 选择适合的ADT版本&#xff1a; SAP Development Tools for Eclipse - 2023-03 Software Repository https://tools.hana.ondemand.com/2023-06 SAP Development Tools for Eclipse - Latest Software Repository 选择ABAP development …

go Channel原理 (二)

Channel 设计原理 不要通过共享内存的方式进行通信&#xff0c;而是应该通过通信的方式共享内存。 在主流编程语言中&#xff0c;多个线程传递数据的方式一般都是共享内存。 Go 可以使用共享内存加互斥锁进行通信&#xff0c;同时也提供了一种不同的并发模型&#xff0c;即通…

OSRAM欧司朗XBO短弧氙灯160WHSXLOFR短弧氙灯450W

OSRAM欧司朗XBO短弧氙灯160WHSXLOFR短弧氙灯450W

Pycharm中安装Pytorch的库

step1&#xff1a; step2&#xff1a; step3&#xff1a; pip install torch torchvisionstep4&#xff1a; pip install numpy<2 # 版本低点&#xff0c;和pytorch版本不兼容&#xff0c;我当时是用的2.0的step5&#xff1a; pip install pandasstep6&#xff1a; …

2.00004 优化器执行计划生成的流程是怎么样的?

文章目录 整体架构关键结构体PlannerInfo (pathnodes.h:195)PlannerGlobal (pathnodes.h:95)函数栈关键函数pg_plan_query (postgres.c:885)planner (planner.c:274)standard_planner (planner.c:287)subquery_planner (planner.c:628)整体架构 关键结构体 PlannerInfo (pathn…

【电源拓扑】PFC

为什么开关电源中都有PFC电路 PFC电路就是功率矫正电路&#xff0c;目的是为了防止杂波对电网产生冲击 AC220V通过整流桥之后电压和电流的波形分析 PFC电路为什么选择是Boost升压电路 PFC电路为什么要把电压升高到400V 为了解决输入电压低于滤波电容电压这个矛盾&#xff0…

2024攻防演练:亚信安全推出MSS/SaaS短期定制服务

随着2024年攻防演练周期延长的消息不断传出&#xff0c;各参与方将面临前所未有的挑战。面对强大的攻击队伍和日益严格的监管压力&#xff0c;防守单位必须提前进行全面而周密的准备和部署。为应对这一形势&#xff0c;亚信安全特别推出了为期三个月的MSS/SaaS短期订阅方案。该…

《昇思25天学习打卡营第8天|CarpeDiem》

《昇思25天学习打卡营第8天|CarpeDiem》 模型训练构建数据集定义神经网络模型定义超参、损失函数和优化器超参损失函数优化器 训练与评估 打卡 今天是昇思25天学习打卡营的第8天&#xff0c;终于迎来 模型训练 的部分了&#xff01;&#xff01;&#xff01; 兴奋 发癫 模型训…

2065. 最大化一张图中的路径价值 Hard

给你一张 无向 图&#xff0c;图中有 n 个节点&#xff0c;节点编号从 0 到 n - 1 &#xff08;都包括&#xff09;。同时给你一个下标从 0 开始的整数数组 values &#xff0c;其中 values[i] 是第 i 个节点的 价值 。同时给你一个下标从 0 开始的二维整数数组 edges &#xf…

SSL证书的重要作用和申请方法

SSL&#xff08;Secure Sockets Layer&#xff09;证书作为一种基础而强大的网络安全工具&#xff0c;扮演着保护数据传输安全、建立用户信任的桥梁角色。本文将深入探讨SSL证书的主要作用&#xff0c;并详细介绍其申请方法&#xff0c;以帮助网站所有者为用户提供一个更加安全…

Linux下编程之内存检查

前言 我们在进行编程时&#xff0c;有时不免会无意中写出一些容易导致内存问题&#xff08;可能一时表象上正常&#xff09;的代码&#xff0c;导致的后果肯定是不好的&#xff0c;就像一颗颗“哑弹”&#xff0c;令人心慌。网上推荐的辅助工具很多&#xff0c;此篇文章…

Reflexion:通过语言反馈增强的智能体

Reflexion: Language Agents with Verbal Reinforcement Learning Reflexion: language agents with verbal reinforcement learninghttps://proceedings.neurips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html 1.概述 最近,Re…