基于STM32的智能电池管理系统

news2024/11/19 17:51:00

目录

  1. 引言
  2. 环境准备
  3. 智能电池管理系统基础
  4. 代码实现:实现智能电池管理系统
    • 4.1 数据采集模块
    • 4.2 数据处理与分析
    • 4.3 控制系统实现
    • 4.4 用户界面与数据可视化
  5. 应用场景:电池管理与优化
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

智能电池管理系统(Battery Management System,BMS)通过使用STM32嵌入式系统,结合多种传感器和控制设备,实现对电池状态的实时监测和自动化管理。本文将详细介绍如何在STM32系统中实现一个智能电池管理系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  • 开发板:STM32F407 Discovery Kit
  • 调试器:ST-LINK V2或板载调试器
  • 电压传感器:用于检测电池电压
  • 电流传感器:如ACS712,用于检测电池电流
  • 温度传感器:如NTC热敏电阻,用于检测电池温度
  • 显示屏:如OLED显示屏
  • 按键或旋钮:用于用户输入和设置
  • 电源:12V或24V电源适配器

软件准备

  • 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  • 调试工具:STM32 ST-LINK Utility或GDB
  • 库和中间件:STM32 HAL库

安装步骤

  1. 下载并安装 STM32CubeMX
  2. 下载并安装 STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序

3. 智能电池管理系统基础

控制系统架构

智能电池管理系统由以下部分组成:

  • 数据采集模块:用于采集电池电压、电流和温度数据
  • 数据处理模块:对采集的数据进行处理和分析
  • 控制系统:根据处理结果控制电池的充放电状态
  • 显示系统:用于显示电池状态和系统信息
  • 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过电压传感器、电流传感器和温度传感器采集电池状态数据,并实时显示在OLED显示屏上。系统根据设定的阈值自动控制电池的充放电状态,实现智能电池的自动化管理。用户可以通过按键或旋钮进行设置,并通过显示屏查看当前状态。

4. 代码实现:实现智能电池管理系统

4.1 数据采集模块

配置电压传感器
使用STM32CubeMX配置ADC接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

初始化电压传感器并读取数据:

#include "stm32f4xx_hal.h"

ADC_HandleTypeDef hadc1;

void ADC_Init(void) {
    __HAL_RCC_ADC1_CLK_ENABLE();

    ADC_ChannelConfTypeDef sConfig = {0};

    hadc1.Instance = ADC1;
    hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
    hadc1.Init.Resolution = ADC_RESOLUTION_12B;
    hadc1.Init.ScanConvMode = DISABLE;
    hadc1.Init.ContinuousConvMode = ENABLE;
    hadc1.Init.DiscontinuousConvMode = DISABLE;
    hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
    hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
    hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
    hadc1.Init.NbrOfConversion = 1;
    hadc1.Init.DMAContinuousRequests = DISABLE;
    hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
    HAL_ADC_Init(&hadc1);

    sConfig.Channel = ADC_CHANNEL_0;
    sConfig.Rank = 1;
    sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
    HAL_ADC_ConfigChannel(&hadc1, &sConfig);
}

uint32_t Read_Voltage(void) {
    HAL_ADC_Start(&hadc1);
    HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);
    return HAL_ADC_GetValue(&hadc1);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    ADC_Init();

    uint32_t voltage_value;

    while (1) {
        voltage_value = Read_Voltage();
        HAL_Delay(1000);
    }
}

配置ACS712电流传感器
使用STM32CubeMX配置ADC接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

初始化ACS712传感器并读取数据:

#include "stm32f4xx_hal.h"

ADC_HandleTypeDef hadc2;

void ADC2_Init(void) {
    __HAL_RCC_ADC2_CLK_ENABLE();

    ADC_ChannelConfTypeDef sConfig = {0};

    hadc2.Instance = ADC2;
    hadc2.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
    hadc2.Init.Resolution = ADC_RESOLUTION_12B;
    hadc2.Init.ScanConvMode = DISABLE;
    hadc2.Init.ContinuousConvMode = ENABLE;
    hadc2.Init.DiscontinuousConvMode = DISABLE;
    hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
    hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
    hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
    hadc2.Init.NbrOfConversion = 1;
    hadc2.Init.DMAContinuousRequests = DISABLE;
    hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
    HAL_ADC_Init(&hadc2);

    sConfig.Channel = ADC_CHANNEL_1;
    sConfig.Rank = 1;
    sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
    HAL_ADC_ConfigChannel(&hadc2, &sConfig);
}

uint32_t Read_Current(void) {
    HAL_ADC_Start(&hadc2);
    HAL_ADC_PollForConversion(&hadc2, HAL_MAX_DELAY);
    return HAL_ADC_GetValue(&hadc2);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    ADC2_Init();

    uint32_t current_value;

    while (1) {
        current_value = Read_Current();
        HAL_Delay(1000);
    }
}

配置温度传感器
使用STM32CubeMX配置ADC接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

初始化温度传感器并读取数据:

#include "stm32f4xx_hal.h"

ADC_HandleTypeDef hadc3;

void ADC3_Init(void) {
    __HAL_RCC_ADC3_CLK_ENABLE();

    ADC_ChannelConfTypeDef sConfig = {0};

    hadc3.Instance = ADC3;
    hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
    hadc3.Init.Resolution = ADC_RESOLUTION_12B;
    hadc3.Init.ScanConvMode = DISABLE;
    hadc3.Init.ContinuousConvMode = ENABLE;
    hadc3.Init.DiscontinuousConvMode = DISABLE;
    hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
    hadc3.Init.ExternalTrigConv = ADC_SOFTWARE_START;
    hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT;
    hadc3.Init.NbrOfConversion = 1;
    hadc3.Init.DMAContinuousRequests = DISABLE;
    hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
    HAL_ADC_Init(&hadc3);

    sConfig.Channel = ADC_CHANNEL_2;
    sConfig.Rank = 1;
    sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
    HAL_ADC_ConfigChannel(&hadc3, &sConfig);
}

uint32_t Read_Temperature(void) {
    HAL_ADC_Start(&hadc3);
    HAL_ADC_PollForConversion(&hadc3, HAL_MAX_DELAY);
    return HAL_ADC_GetValue(&hadc3);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    ADC3_Init();

    uint32_t temperature_value;

    while (1) {
        temperature_value = Read_Temperature();
        HAL_Delay(1000);
    }
}

4.2 数据处理与分析

数据处理模块将传感器数据转换为可用于控制系统的数据,并进行必要的计算和分析。此处示例简单的处理和分析功能。

void Process_Battery_Data(uint32_t voltage_value, uint32_t current_value, uint32_t temperature_value) {
    // 数据处理和分析逻辑
    // 例如:根据电压、电流和温度数据判断电池状态
}

4.3 控制系统实现

配置电池充放电控制
使用STM32CubeMX配置GPIO:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的GPIO引脚,设置为输出模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

初始化电池充放电控制引脚:

#include "stm32f4xx_hal.h"

#define CHARGE_PIN GPIO_PIN_1
#define DISCHARGE_PIN GPIO_PIN_2
#define GPIO_PORT GPIOB

void GPIO_Init(void) {
    __HAL_RCC_GPIOB_CLK_ENABLE();

    GPIO_InitTypeDef GPIO_InitStruct = {0};
    GPIO_InitStruct.Pin = CHARGE_PIN | DISCHARGE_PIN;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
    HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}

void Control_Charge(uint8_t state) {
    HAL_GPIO_WritePin(GPIO_PORT, CHARGE_PIN, state ? GPIO_PIN_SET : GPIO_PIN_RESET);
}

void Control_Discharge(uint8_t state) {
    HAL_GPIO_WritePin(GPIO_PORT, DISCHARGE_PIN, state ? GPIO_PIN_SET : GPIO_PIN_RESET);
}

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIO_Init();
    ADC_Init();
    ADC2_Init();
    ADC3_Init();

    uint32_t voltage_value;
    uint32_t current_value;
    uint32_t temperature_value;

    while (1) {
        // 读取传感器数据
        voltage_value = Read_Voltage();
        current_value = Read_Current();
        temperature_value = Read_Temperature();

        // 数据处理
        Process_Battery_Data(voltage_value, current_value, temperature_value);

        // 根据处理结果控制电池充放电
        if (voltage_value < 3600) { // 例子:电压低于阈值时开始充电
            Control_Charge(1);  // 开始充电
            Control_Discharge(0);  // 停止放电
        } else if (voltage_value > 4200) { // 例子:电压高于阈值时停止充电
            Control_Charge(0);  // 停止充电
            Control_Discharge(1);  // 开始放电
        }

        HAL_Delay(1000);
    }
}

4.4 用户界面与数据可视化

配置OLED显示屏
使用STM32CubeMX配置I2C接口:

  1. 打开STM32CubeMX,选择您的STM32开发板型号。
  2. 在图形化界面中,找到需要配置的I2C引脚,设置为I2C模式。
  3. 生成代码并导入到STM32CubeIDE中。

代码实现:

首先,初始化OLED显示屏:

#include "stm32f4xx_hal.h"
#include "i2c.h"
#include "oled.h"

void Display_Init(void) {
    OLED_Init();
}

然后实现数据展示函数,将电池状态数据展示在OLED屏幕上:

void Display_Battery_Data(uint32_t voltage_value, uint32_t current_value, uint32_t temperature_value) {
    char buffer[32];
    sprintf(buffer, "Voltage: %lu mV", voltage_value);
    OLED_ShowString(0, 0, buffer);
    sprintf(buffer, "Current: %lu mA", current_value);
    OLED_ShowString(0, 1, buffer);
    sprintf(buffer, "Temp: %lu C", temperature_value);
    OLED_ShowString(0, 2, buffer);
}

在主函数中,初始化系统并开始显示数据:

int main(void) {
    HAL_Init();
    SystemClock_Config();
    GPIO_Init();
    ADC_Init();
    ADC2_Init();
    ADC3_Init();
    Display_Init();

    uint32_t voltage_value;
    uint32_t current_value;
    uint32_t temperature_value;

    while (1) {
        // 读取传感器数据
        voltage_value = Read_Voltage();
        current_value = Read_Current();
        temperature_value = Read_Temperature();

        // 显示电池状态数据
        Display_Battery_Data(voltage_value, current_value, temperature_value);

        // 数据处理
        Process_Battery_Data(voltage_value, current_value, temperature_value);

        // 根据处理结果控制电池充放电
        if (voltage_value < 3600) { // 例子:电压低于阈值时开始充电
            Control_Charge(1);  // 开始充电
            Control_Discharge(0);  // 停止放电
        } else if (voltage_value > 4200) { // 例子:电压高于阈值时停止充电
            Control_Charge(0);  // 停止充电
            Control_Discharge(1);  // 开始放电
        }

        HAL_Delay(1000);
    }
}

5. 应用场景:电池管理与优化

便携设备电池管理

智能电池管理系统可以应用于便携设备,如手机、笔记本电脑和平板电脑,通过实时监测电池状态,优化充放电策略,延长电池寿命。

电动汽车电池管理

在电动汽车中,智能电池管理系统可以帮助管理电池组的状态,确保电池的安全和高效运行,提高续航里程和电池寿命。

可再生能源存储

智能电池管理系统可以用于可再生能源存储系统,如太阳能和风能,通过优化充放电过程,提高能源利用效率。

无人机电池管理

智能电池管理系统可以用于无人机,通过实时监测电池状态,确保飞行安全,优化续航能力。

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

 

6. 问题解决方案与优化

常见问题及解决方案

  1. 传感器数据不准确:确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。

    • 解决方案:检查传感器与STM32之间的连接是否牢固,必要时重新焊接或更换连接线。同时,定期对传感器进行校准,确保数据准确。
  2. 设备响应延迟:优化控制逻辑和硬件配置,减少设备响应时间,提高系统反应速度。

    • 解决方案:优化传感器数据采集和处理流程,减少不必要的延迟。使用DMA(直接存储器访问)来提高数据传输效率,减少CPU负担。选择速度更快的处理器和传感器,提升整体系统性能。
  3. 显示屏显示异常:检查I2C通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

    • 解决方案:检查I2C引脚的连接是否正确,确保电源供电稳定。使用示波器检测I2C总线信号,确认通信是否正常。如有必要,更换显示屏或MCU。
  4. 充放电控制不稳定:确保充放电控制模块和控制电路的连接正常,优化控制算法。

    • 解决方案:检查充放电控制模块和控制电路的连接,确保接线正确、牢固。使用更稳定的电源供电,避免电压波动影响设备运行。优化控制算法,确保充放电过程平稳过渡。
  5. 系统功耗过高:优化系统功耗设计,提高系统的能源利用效率。

    • 解决方案:使用低功耗模式(如STM32的STOP模式)降低系统功耗。选择更高效的电源管理方案,减少不必要的电源消耗。

优化建议

  1. 数据集成与分析:集成更多类型的传感器数据,使用数据分析技术进行电池状态的预测和优化。

    • 建议:增加更多电池传感器,如内阻传感器、容量传感器等。使用云端平台进行数据分析和存储,提供更全面的电池管理服务。
  2. 用户交互优化:改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。

    • 建议:使用高分辨率彩色显示屏,提供更丰富的视觉体验。设计简洁易懂的用户界面,让用户更容易操作。提供图形化的数据展示,如实时图表、电池状态图等。
  3. 智能化控制提升:增加智能决策支持系统,根据历史数据和实时数据自动调整电池管理策略,实现更高效的电池管理。

    • 建议:使用数据分析技术分析电池数据,提供个性化的控制建议。结合历史数据,预测可能的电池状态变化和需求,提前调整管理策略。

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中实现智能电池管理系统,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。通过合理的技术选择和系统设计,可以构建一个高效且功能强大的智能电池管理系统。在实际应用中,还可以根据具体需求进行优化和扩展,提升系统的性能和可靠性。

总结

  1. 系统设计:结合STM32和多种传感器,实现全面的电池状态监测和管理。
  2. 用户界面:通过OLED显示屏提供直观的数据展示,提升用户体验。
  3. 优化和扩展:通过硬件和软件的优化,不断提升系统性能和可靠性。

智能电池管理系统不仅可以应用于便携设备电池管理、电动汽车电池管理和可再生能源存储,还可以用于无人机电池管理,具有广泛的应用前景。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1882027.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C语言--vs使用调试技巧

1.什么是bug? 1.产品说明书中规定要做的事情&#xff0c;而软件没有实现。 2.产品说明书中规定不要做的事情&#xff0c;而软件确实现了。 3.产品说明书中没有提到过的事情&#xff0c;而软件确实现了。 4.产品说明书中没有提到但是必须要做的事情&#xff0c;软件确没有实…

预付式消费,今起实行!

近年来&#xff0c;随着我国经济社会快速发展&#xff0c;消费新业态、新模式不断涌现&#xff0c;消费者权益保护也面临新情况、新问题。 大数据杀熟、自动续费难取消、网络直播带货“以假充真”“以次充好”、预付式消费商家跑路……数据显示&#xff0c;2023年&#xff0c;…

Vue 常见面试题及答案

本人详解 作者:王文峰,参加过 CSDN 2020年度博客之星,《Java王大师王天师》 公众号:JAVA开发王大师,专注于天道酬勤的 Java 开发问题中国国学、传统文化和代码爱好者的程序人生,期待你的关注和支持!本人外号:神秘小峯 山峯 转载说明:务必注明来源(注明:作者:王文峰…

鸿蒙:页面路由使用

页面路由使用步骤&#xff1a; 1.导入Router模块 2.使用路由功能&#xff0c;以pushUrl模式为例 3.接收参数、返回 4.此时的路由是不能使用的&#xff0c;需要到main_pages.json中进行注册

vscode的一些使用问题

vscode使用技巧 1、快捷键&#xff08;1&#xff09;打开命令面板&#xff08;2&#xff09;注释&#xff08;3&#xff09;删除行&#xff08;4&#xff09;上下移动光标&#xff08;5&#xff09;光标回退&#xff08;6&#xff09;复制行&#xff08;7&#xff09;插入空白行…

opencv编译报错OpenCV does not recognize MSVC_VERSION “1940“

具体如下: CMake Warning at cmake/OpenCVDetectCXXCompiler.cmake:182 (message):OpenCV does not recognize MSVC_VERSION "1940". Cannot set OpenCV_RUNTIME Call Stack (most recent call first):CMakeLists.txt:174 (include) 打开源码\opencv\sources\cmak…

【正点原子K210连载】第十四章 按键输入实验 摘自【正点原子】DNK210使用指南-CanMV版指南

1&#xff09;实验平台&#xff1a;正点原子ATK-DNK210开发板 2&#xff09;平台购买地址https://detail.tmall.com/item.htm?id731866264428 3&#xff09;全套实验源码手册视频下载地址&#xff1a; http://www.openedv.com/docs/boards/xiaoxitongban 第十四章 按键输入实…

FPGA - 图像灰度化

一&#xff0c;灰度图像概念 灰度数字图像是每个像素只有一个采样颜色的图像。这类图像通常显示为从最暗黑色到最亮的白色的灰度&#xff0c;尽管理论上这个采样可以任何颜色的不同深浅&#xff0c;甚至可以是不同亮度上的不同颜色。灰度图像与黑白图像不同&#xff0c;在计算机…

50+k8s常用命令,助你成为k8s大牛!

Kubernetes是一个强大的容器编排平台&#xff0c;不管是运维、开发还是测试或多或少都会接触到&#xff0c;熟练的掌握k8s可大大提高工作效率和强化自身技能。 集群管理 1. 查看集群节点状态: kubectl get nodes2. 查看集群资源使用情况: kubectl top nodes3. 查看集群信息…

【MySQL】数据库——备份与恢复,日志管理1

一、数据备份的重要性 1.备份的主要目的是灾难恢复 在生产环境中&#xff0c;数据的安全性至关重要 任何数据的丢失都可能产生严重的后果造成数据丢失的原因&#xff1a; 程序错误人为,操作错误运算错误磁盘故障灾难&#xff08;如火灾、地震&#xff09;和盗窃 2.数据库备份…

IPFS 的开发对接流程

IPFS 的对接流程通常包括以下几个步骤&#xff0c;请注意&#xff0c;IPFS 的对接流程可能因您的具体需求而异。建议您在进行任何操作之前仔细阅读相关文档。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1. 安装 IPFS 下载并安装 …

Java外卖点餐连锁店餐饮生鲜奶茶外卖店内扫码点餐源码同城外卖校园外卖源码

外卖点餐连锁店餐饮生鲜奶茶外卖小程序&#xff1a;打造一站式便捷服务 &#x1f680; 引领外卖新潮流&#xff1a;小程序的力量 在数字化时代&#xff0c;外卖小程序已成为餐饮行业的新宠。它不仅提供了便捷的点餐服务&#xff0c;还融合了连锁店、餐饮生鲜、奶茶等多种业务…

[Shell编程学习路线]——shell脚本中case语句多分支选择详解

&#x1f3e1;作者主页&#xff1a;点击&#xff01; &#x1f6e0;️Shell编程专栏&#xff1a;点击&#xff01; ⏰️创作时间&#xff1a;2024年6月21日16点30分 &#x1f004;️文章质量&#xff1a;95分 ————前言———— 在Shell编程中&#xff0c;处理多种条件…

强度理论的相当应力在坐标图里的表示

以下的图均只考虑二维&#xff0c;且没有切应力&#xff0c;有切应力的情况可以转换成只有两个正应力的情况&#xff0c;另外&#xff0c;这里画出的图均认为相当应力就是许用应力 第一&#xff0c;二强度理论用于脆性材料 两种强度理论的图均明显有一个转角&#xff0c;这是因…

springboot接口防抖【防重复提交】

什么是防抖 所谓防抖&#xff0c;一是防用户手抖&#xff0c;二是防网络抖动。在Web系统中&#xff0c;表单提交是一个非常常见的功能&#xff0c;如果不加控制&#xff0c;容易因为用户的误操作或网络延迟导致同一请求被发送多次&#xff0c;进而生成重复的数据记录。要针对用…

Anaconda创建虚拟环境+Pycharm和Jupyter使用虚拟环境

文章目录 前言一、创建虚拟环境步骤1.查看已有虚拟环境2.创建虚拟环境3.激活虚拟环境4.查看已安装的库清单5.删除虚拟环境 二、pycharm导入虚拟环境三、jupyter导入虚拟环境1.激活虚拟环境2.导入内核3.打开jupyter4.选择虚拟环境5.查看内核列表6.删除内核 前言 提前下载好Anac…

Windows定时任务执行脚本

场景&#xff1a;由于网络波动原因导致云数据库没连接上&#xff0c;从而导致某个流程引擎链接不上数据库从而导致该流程引擎服务挂了&#xff0c;网络恢复后 数据库链接正常&#xff0c;但是该引擎服务还是中止状态。 解决方案&#xff1a;在Windows中新建一个定时任务&#…

服务器raid5坏盘-换盘-修复阵列过程

目录 背景原因分析解决步骤名词解释进入raid管理界面换回旧4号&#xff0c;进行import再次更换4号盘 总结 背景 服务器除尘之后文件服务器部分文件不能访问了,部分文件夹内容为空&#xff0c;起初以为是新配置的权限的问题&#xff0c;排查之后发现不仅仅是权限问题 jumpserv…

hello.go程序讲解、litelde的使用

package mainimport "fmt"func main() {fmt.Println("hello go!!!") }注意 go语言有且只有一个入口函数main()&#xff0c;一个文件夹也只能有一个main函数 两个文件夹里面都有main函数是不能编译通过的&#xff0c;需要分到不同的文件夹&#xff0c;只能…

C++视觉开发 二.OpenCV基础

目录 本章记录OpenCV开发中的基本操作语法 一.基础 1.读取图像 2.显示图像 3.保存图像 二.图像 1.像素处理 2.彩色图像 三.滤波 1.高斯滤波&#xff08;Gaussian Blur&#xff09; 功能&#xff1a; 高斯滤波是一种常用的线性平滑滤波器&#xff0c;用于降低图像噪声…