声明(lianxi a15018601872)
本文章中所有内容仅供学习交流使用,不用于其他任何目的,抓包内容、敏感网址、数据接口等均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后果均与作者无关!
前言(lianxi a15018601872)
挺有意思的拼多多滑块,搞了一会。说一下踩坑流程,和破解思路。
1.anti_content
这个以后再说,搞海外拼多多我会细说现在就算了。以练习滑块为主。不过这个anti_content很奇怪。我仔细看了一下他的检测点和本地做对比我之前只补了60多行的那个竟然能跑明明挺多监测点都被检测了。不过我今天随便把他补完了本来是本来说不想补的后面说原因。
2.滑块处理
主要需要这几个参数。
verify_code是把识别的距离做一些小处理。verify_auth_token是第一步获取的一个token。
最重要的是anti_content和collect。collect里面包含了很多信息。如图
'verify_code': verify_code,
'captcha_collect': captcha_collect,
'verify_auth_token': verifyAuthToken,
'anti_content': requests.get('http://localhost:3000/login').text
imageSize固定的。del是轨迹开头坐标,mel滑动过程 ,uel是最后一个滑动轨迹坐标,最后一个是图片加载后在页面上的滑动轨迹和mel加在一起。所以用贝塞尔曲线直接构造就行了。注意时间戳就行了。我刚开始以为是anti_content没补好,在滑块处严格检测所以补完了。
[
{
"KEY": "imageSize",
"data": {
"width": 272,
"height": 198
}
},
{
"KEY": "del",
"MAX_LENGTH": 50,
"data": [
[
32,
180,
1719757842387
]
],
"preTimeStamp": 1500000.6000000015
},
{
"KEY": "mel",
"MAX_LENGTH": 400,
"data": [
[
32,
180,
1719757842469
],
[
36,
180,
1719757842485
],
[
44,
178,
1719757842501
],
[
53,
177,
1719757842517
],
[
63,
176,
1719757842533
],
[
69,
176,
1719757842548
],
[
74,
176,
1719757842565
],
[
80,
176,
1719757842581
],
[
89,
176,
1719757842596
],
[
102,
176,
1719757842613
],
[
111,
176,
1719757842629
],
[
118,
176,
1719757842644
],
[
124,
176,
1719757842660
],
[
128,
176,
1719757842677
],
[
132,
176,
1719757842692
],
[
134,
176,
1719757842709
],
[
137,
176,
1719757842725
],
[
139,
176,
1719757842741
],
[
140,
176,
1719757842757
],
[
143,
176,
1719757842773
],
[
144,
176,
1719757842789
],
[
147,
175,
1719757842805
],
[
150,
174,
1719757842821
],
[
152,
174,
1719757842837
],
[
155,
173,
1719757842853
],
[
157,
172,
1719757842876
],
[
160,
172,
1719757842893
],
[
163,
171,
1719757842908
],
[
164,
170,
1719757842925
],
[
167,
169,
1719757842948
],
[
168,
169,
1719757843357
],
[
170,
169,
1719757843402
],
[
171,
169,
1719757843428
],
[
172,
168,
1719757843454
],
[
172,
168,
1719757843479
],
[
178,
168,
1719757843509
],
[
180,
168,
1719757843533
],
[
183,
168,
1719757843551
],
[
187,
168,
1719757843568
],
[
189,
168,
1719757843581
],
[
192,
168,
1719757843597
],
[
195,
168,
1719757843612
],
[
196,
168,
1719757843629
],
[
198,
168,
1719757843645
],
[
200,
167,
1719757843669
],
[
201,
167,
1719757843685
],
[
203,
167,
1719757843716
],
[
204,
166,
1719757843732
],
[
204,
166,
1719757843748
],
[
205,
166,
1719757843772
],
[
207,
165,
1719757843796
],
[
208,
165,
1719757843812
],
[
210,
165,
1719757843828
],
[
211,
165,
1719757843844
],
[
212,
165,
1719757843860
],
[
216,
165,
1719757843962
],
[
217,
165,
1719757843972
],
[
219,
165,
1719757843988
],
[
220,
165,
1719757844116
],
[
220,
165,
1719757844140
],
[
221,
165,
1719757844180
],
[
222,
165,
1719757844244
],
[
223,
165,
1719757844300
]
],
"preTimeStamp": 1501912.299999997
},
{
"KEY": "uel",
"MAX_LENGTH": 50,
"data": [
[
223,
165,
1719757844435
]
],
"preTimeStamp": 1502048.299999997
},
{
"KEY": "mell",
"MAX_LENGTH": 200,
"data": [
[
[
200,
44,
1719757841775
],
[
200,
45,
1719757841791
],
[
192,
61,
1719757841883
],
[
188,
67,
1719757841888
],
[
183,
77,
1719757841903
],
[
172,
94,
1719757841918
],
[
159,
113,
1719757841935
],
[
142,
135,
1719757841951
],
[
129,
150,
1719757841967
],
[
118,
160,
1719757841983
],
[
110,
166,
1719757842000
],
[
105,
169,
1719757842014
],
[
102,
171,
1719757842031
],
[
96,
173,
1719757842046
],
[
89,
175,
1719757842087
],
[
81,
177,
1719757842095
],
[
76,
178,
1719757842106
],
[
75,
178,
1719757842127
],
[
74,
178,
1719757842143
],
[
72,
178,
1719757842159
],
[
71,
179,
1719757842175
],
[
66,
180,
1719757842191
],
[
58,
180,
1719757842207
],
[
51,
180,
1719757842223
],
[
44,
180,
1719757842239
],
[
39,
180,
1719757842255
],
[
35,
180,
1719757842271
],
[
32,
180,
1719757842286
]
],
[
[
32,
180,
1719757842471
],
[
36,
180,
1719757842487
],
[
44,
178,
1719757842503
],
[
53,
177,
1719757842519
],
[
63,
176,
1719757842535
],
[
69,
176,
1719757842550
],
[
74,
176,
1719757842567
],
[
80,
176,
1719757842583
],
[
89,
176,
1719757842598
],
[
102,
176,
1719757842616
],
[
111,
176,
1719757842631
],
[
118,
176,
1719757842647
],
[
124,
176,
1719757842663
],
[
128,
176,
1719757842678
],
[
132,
176,
1719757842694
],
[
134,
176,
1719757842711
],
[
137,
176,
1719757842726
],
[
139,
176,
1719757842743
],
[
140,
176,
1719757842760
],
[
143,
176,
1719757842776
],
[
144,
176,
1719757842791
],
[
147,
175,
1719757842807
],
[
150,
174,
1719757842823
],
[
152,
174,
1719757842839
],
[
155,
173,
1719757842855
],
[
157,
172,
1719757842878
],
[
160,
172,
1719757842895
],
[
163,
171,
1719757842910
],
[
164,
170,
1719757842927
],
[
167,
169,
1719757842950
],
[
168,
169,
1719757843359
],
[
170,
169,
1719757843406
],
[
171,
169,
1719757843430
],
[
172,
168,
1719757843457
],
[
172,
168,
1719757843506
],
[
178,
168,
1719757843512
],
[
180,
168,
1719757843535
],
[
183,
168,
1719757843565
],
[
187,
168,
1719757843571
],
[
189,
168,
1719757843584
],
[
192,
168,
1719757843599
],
[
195,
168,
1719757843614
],
[
196,
168,
1719757843632
],
[
198,
168,
1719757843647
],
[
200,
167,
1719757843670
],
[
201,
167,
1719757843687
],
[
203,
167,
1719757843717
],
[
204,
166,
1719757843733
],
[
204,
166,
1719757843749
],
[
205,
166,
1719757843773
],
[
207,
165,
1719757843797
],
[
208,
165,
1719757843813
],
[
210,
165,
1719757843829
],
[
211,
165,
1719757843845
],
[
212,
165,
1719757843861
],
[
216,
165,
1719757843963
],
[
217,
165,
1719757843973
],
[
219,
165,
1719757843990
],
[
220,
165,
1719757844117
],
[
220,
165,
1719757844141
],
[
221,
165,
1719757844181
],
[
222,
165,
1719757844245
],
[
223,
165,
1719757844302
]
]
],
"preTimeStamp": 1501912.299999997
}
]