【ESP32】打造全网最强esp-idf基础教程——14.VFS与SPIFFS文件系统

news2025/1/21 9:43:03

VFS与SPIFFS文件系统

       这几天忙着搬砖,差点没时间更新博客了,所谓一日未脱贫,打工不能停,搬砖不狠,明天地位不稳呀。 不多说了,且看以下内容吧~

一、VFS虚拟文件系统
       先来看下文件系统的定义,文件系统是操作系统中用于组织、管理和存储持久性数据的一个关键组件。它是方法和数据结构的集合,使操作系统能够有效地在存储设备(如硬盘驱动器、固态硬盘、USB闪存驱动器等)上存储、检索和管理文件。
文件系统通常由三个主要部分组成:
       1)文件系统的接口:用户和应用程序与文件系统交互的方式。
       2)对对象操纵和管理的软件集合:实现文件创建、删除、读取、写入、重命名等操作的系统软件。
       3)对象及属性:实际存储的数据文件以及与之相关的元数据信息。

       当我们使用标准文件操作时,比如我们使用fwrite(buffer,size,count,file)函数时,我们不用关心到底是写入到磁盘上哪个地址,偏移量是多少等等诸如此类的硬件底层问题,因为这些操作文件系统已经帮我们处理好了,我们只需要关注往哪个文件写入什么内容,从哪个文件读取什么内容即可,文件系统帮我们把这些文件有效的管理组织起来,形成包括文件和目录的层次结构。

       在esp-idf中虚拟文件系统 (VFS) 组件为驱动程序提供一个统一接口,可以操作类文件对象。这类驱动程序可以是 FAT、SPIFFS 等真实文件系统,也可以是提供文件类接口的设备驱动程序。

       VFS 组件支持 C 库函数(如 fopen 和 fprintf 等)与文件系统 (FS) 驱动程序协同工作。在高层级,每个 FS 驱动程序均与某些路径前缀相关联。当一个 C 库函数需要打开文件时,VFS 组件将搜索与该文件所在文件路径相关联的 FS 驱动程序,并将调用传递给该驱动程序。针对该文件的读取、写入等其他操作的调用也将传递给这个驱动程序。

       例如,使用 /fat 前缀注册 FAT 文件系统驱动,之后即可调用 fopen("/fat/file.txt", "w")。之后,VFS 将调用FAT驱动的 open 函数,并将参数 /file.txt 和合适的打开模式传递给 open 函数;后续对返回的 FILE* 数据流调用C库函数也同样会传递给 FAT 驱动。
       如需注册 FS 驱动程序,应用程序首先要定义一个 esp_vfs_t 结构体实例,并用指向 FS API 的函数指针填充它。

        esp_vfs_t myfs = {    
       .flags = ESP_VFS_FLAG_DEFAULT,    
       .write = &myfs_write,    
       .open = &myfs_open,    
       .fstat = &myfs_fstat,    
       .close = &myfs_close,    
       .read = &myfs_read,
       };
       ESP_ERROR_CHECK(esp_vfs_register("/data", &myfs, NULL));

       在上述代码中需要用到 read、 write 或 read_p、 write_p,具体使用哪组函数由 FS 驱动程序 API 的声明方式决定。
       示例 1:声明 API 函数时不带额外的上下文指针参数,即 FS 驱动程序为单例模式,此时使用 write

       ssize_t myfs_write(int fd, const void * data, size_t size);
       // In definition of esp_vfs_t:    
       .flags = ESP_VFS_FLAG_DEFAULT,   
       .write = &myfs_write,// ... other members initialized
       // When registering FS, context pointer (third argument) is NULL:
       ESP_ERROR_CHECK(esp_vfs_register("/data", &myfs, NULL));

        示例 2:声明 API 函数时需要一个额外的上下文指针作为参数,即可支持多个 FS 驱动程序实例,此时使用 write_p

       ssize_t myfs_write(myfs_t* fs, int fd, const void * data, size_t size);
       // In definition of esp_vfs_t:    
       .flags = ESP_VFS_FLAG_CONTEXT_PTR,    
      .write_p = &myfs_write,// ... other members initialized
       // When registering FS, pass the FS context pointer into the third argument
       // (hypothetical myfs_mount function is used for illustrative purposes)
       myfs_t* myfs_inst1 = myfs_mount(partition1->offset, partition1->size);
       ESP_ERROR_CHECK(esp_vfs_register("/data1", &myfs, myfs_inst1));
       // Can register another instance:
       myfs_t* myfs_inst2 = myfs_mount(partition2->offset, partition2->size);
       ESP_ERROR_CHECK(esp_vfs_register("/data2", &myfs, myfs_inst2));

        已注册的 FS 驱动程序均有一个路径前缀与之关联,此路径前缀即为分区的挂载点。
如果挂载点中嵌套了其他挂载点,则在打开文件时使用具有最长匹配路径前缀的挂载点。

        例如,假设以下文件系统已在 VFS 中注册:ssize_t myfs_write(myfs_t* fs, int fd, const void * data, size_t size); 

       // In definition of esp_vfs_t:    
      .flags = ESP_VFS_FLAG_CONTEXT_PTR,    
      .write_p = &myfs_write,// ... other members initialized
      // When registering FS, pass the FS context pointer into the third argument
      // (hypothetical myfs_mount function is used for illustrative purposes)
      myfs_t* myfs_inst1 = myfs_mount(partition1->offset, partition1->size);
      ESP_ERROR_CHECK(esp_vfs_register("/data1", &myfs, myfs_inst1));
      // Can register another instance:
      myfs_t* myfs_inst2 = myfs_mount(partition2->offset, partition2->size);
      ESP_ERROR_CHECK(esp_vfs_register("/data2", &myfs, myfs_inst2));

      在 /data 下注册 FS 驱动程序1
      在 /data/static 下注册 FS 驱动程序2
      那么:
      打开 /data/log.txt 会调用驱动程序FS1;
      打开 /data/static/index.html 需调用驱动程序FS2;

      即便 FS驱动程序2中没有/index.html,也不会在FS驱动程序1中查找 /static/index.html。
      挂载点名称必须以路径分隔符 (/) 开头,且分隔符后至少包含一个字符。但在以下情况中,VFS 同样支持空的挂载点名称:1. 应用程序需要提供一个”最后方案“下使用的文件系统;2. 应用程序需要同时覆盖 VFS 功能。如果没有与路径匹配的前缀,就会使用到这种文件系统。 

      VFS 不会对路径中的点 (.) 进行特殊处理,也不会将 .. 视为对父目录的引用。在上述示例中,使用 /data/static/../log.txt 路径不会调用 FS 驱动程序 1 打开 /log.txt。特定的 FS 驱动程序(如 FATFS)可能以不同的方式处理文件名中的点。
      执行打开文件操作时,FS 驱动程序仅得到文件的相对路径(挂载点前缀已经被去除): 

      以 /data 为路径前缀注册 myfs 驱动;
      应用程序调用 fopen("/data/config.json", ...);
      VFS 调用 myfs_open("/config.json", ...);
      myfs 驱动打开 /config.json 文件。
      VFS 对文件路径长度没有限制,但文件系统路径前缀受 ESP_VFS_PATH_MAX 限制,即路径前缀上限为 ESP_VFS_PATH_MAX。各个文件系统驱动则可能会对自己的文件名长度设置一些限制。
      以上内容是我从官方资料中筛选出来的,大家可能看完了也不是很懂,但没关系,看不懂有两种方法,一是再几遍,二就是直接简单点,用代码演示一下。在代码演示之前,还需要讲解一个文件系统,那就是esp-idf里面的spiffs文件系统。 

       二、SPIFFS文件系统
       SPIFFS 是一个用于 SPI NOR flash 设备的嵌入式文件系统,支持磨损均衡、文件系统一致性检查等功能。在介绍ESP32分区表的时候,我们知道了分区类型Type有两种,一种是app,另一种是data,如果我们想要用到spiffs进行存储时,我们需要新建一个分区,然后指定Type=data,子类型Subtype=spiffs,表示此分区用于spiffs文件系统存储。

       目前spiffs文件系统使用有如下限制: 

  • 目前,SPIFFS 尚不支持目录,但可以生成扁平结构。如果 SPIFFS 挂载在 /spiffs 下,在 /spiffs/tmp/myfile.txt 路径下创建一个文件则会在 SPIFFS 中生成一个名为 /tmp/myfile.txt 的文件,而不是在 /spiffs/tmp 下生成名为 myfile.txt 的文件;
  • SPIFFS 并非实时栈,每次写操作耗时不等;
  • 目前,SPIFFS 尚不支持检测或处理已损坏的块。
  • SPIFFS 只能稳定地使用约 75% 的指定分区容量。
  • 当文件系统空间不足时,垃圾收集器会尝试多次扫描文件系统来寻找可用空间。根据所需空间的不同,写操作会被调用多次,每次函数调用将花费几秒。同一操作可能会花费不同时长的问题缘于 SPIFFS 的设计,且已在官方的 SPIFFS github 仓库 或是 https://github.com/espressif/esp-idf/issues/1737 中被多次报告。这个问题可以通过 SPIFFS 配置 部分缓解。
  • 当垃圾收集器尝试多次(默认为 10 次)扫描整个文件系统以回收空间时,在每次扫描期间,如果有可用的数据块,则垃圾收集器会释放一个数据块。因此,如果为垃圾收集器设置的最大运行次数为 n(可通过 SPIFFS_GC_MAX_RUNS 选项配置,该选项位于 SPIFFS 配置 中),那么 n 倍数据块大小的空间将可用于写入数据。如果尝试写入超过 n 倍数据块大小的数据,写入操作可能会失败并返回错误。
  • 如果 ESP32 在文件系统操作期间断电,可能会导致 SPIFFS 损坏。但是仍可通过 esp_spiffs_check 函数恢复文件系统。详情请参阅官方 SPIFFS FAQ。

三、程序例程
       由第一节可知,VFS是虚拟文件系统,它是一个抽象层概念,在注册时需要把它的操作具体关联到某种实际的存储介质,另外,如果我们要想使用SPIFFS文件系统进行存储,也需要配合VFS一起使用。在本例程中VFS与SPIFFS文件系统结合使用,在esp-idf中已经将VFS与SPIFFS的关联操作封装好,我们使用提供的接口就可以轻松的把SPIFF文件系统挂载,请看如下代码。具体代码在esp32-board/spiffs中

#include <stdio.h>
#include <string.h>
#include <sys/unistd.h>
#include <sys/stat.h>
#include "esp_err.h"
#include "esp_log.h"
#include "esp_spiffs.h"

static const char *TAG = "spiffs";
void app_main(void)
{
    ESP_LOGI(TAG, "Initializing SPIFFS");

    esp_vfs_spiffs_conf_t conf = {
      .base_path = "/spiffs",   //可以认为挂着点,后续使用C库函数fopen("/spiffs/...")
      .partition_label = NULL,  //指定spiffs分区,如果为NULL,则默认为分区表中第一个spiffs类型的分区
      .max_files = 5,           //最大可同时打开的文件数
      .format_if_mount_failed = true
    };
    //初始化和挂载spiffs分区
    esp_err_t ret = esp_vfs_spiffs_register(&conf);
    //失败处理
    if (ret != ESP_OK) {
        if (ret == ESP_FAIL) {
            ESP_LOGE(TAG, "Failed to mount or format filesystem");
        } else if (ret == ESP_ERR_NOT_FOUND) {
            ESP_LOGE(TAG, "Failed to find SPIFFS partition");
        } else {
            ESP_LOGE(TAG, "Failed to initialize SPIFFS (%s)", esp_err_to_name(ret));
        }
        return;
    }
    //执行SPIFFS文件系统检查
    ESP_LOGI(TAG, "Performing SPIFFS_check().");
    ret = esp_spiffs_check(conf.partition_label);//操作spiffs文件系统器件断电,可能会导致 SPIFFS 损坏,可通过esp_spiffs_check恢复
    if (ret != ESP_OK) {
        ESP_LOGE(TAG, "SPIFFS_check() failed (%s)", esp_err_to_name(ret));
        return;
    } else {
        ESP_LOGI(TAG, "SPIFFS_check() successful");
    }
    //获取SPIFFS可用区域大小
    size_t total = 0, used = 0;
    ret = esp_spiffs_info(conf.partition_label, &total, &used);
    if (ret != ESP_OK) {
        ESP_LOGE(TAG, "Failed to get SPIFFS partition information (%s). Formatting...", esp_err_to_name(ret));
        esp_spiffs_format(conf.partition_label);
        return;
    } else {
        ESP_LOGI(TAG, "Partition size: total: %d, used: %d", total, used);
    }
    //可用空间异常,执行SPIFFS检查
    if (used > total) {
        ESP_LOGW(TAG, "Number of used bytes cannot be larger than total. Performing SPIFFS_check().");
        ret = esp_spiffs_check(conf.partition_label);
        if (ret != ESP_OK) {
            ESP_LOGE(TAG, "SPIFFS_check() failed (%s)", esp_err_to_name(ret));
            return;
        } else {
            ESP_LOGI(TAG, "SPIFFS_check() successful");
        }
    }
    //结合VFS,可以使用标准C库函数进行文件读写
    ESP_LOGI(TAG, "Opening file");
    FILE* f = fopen("/spiffs/hello.txt", "w");
    if (f == NULL) {
        ESP_LOGE(TAG, "Failed to open file for writing");
        return;
    }
    fprintf(f, "Hello World!\n");
    fclose(f);
    ESP_LOGI(TAG, "File written");
    //检查/spiffs/foo.txt这个文件是否存在,如果存在删除它
    struct stat st;
    if (stat("/spiffs/foo.txt", &st) == 0) {
        // 删除/spiffs/foo.txt文件
        unlink("/spiffs/foo.txt");
    }
    //重命名文件
    ESP_LOGI(TAG, "Renaming file");
    if (rename("/spiffs/hello.txt", "/spiffs/foo.txt") != 0) {
        ESP_LOGE(TAG, "Rename failed");
        return;
    }
    //打开foo文件读取一行
    ESP_LOGI(TAG, "Reading file");
    f = fopen("/spiffs/foo.txt", "r");
    if (f == NULL) {
        ESP_LOGE(TAG, "Failed to open file for reading");
        return;
    }
    char line[64];
    fgets(line, sizeof(line), f);
    fclose(f);
    // strip newline
    char* pos = strchr(line, '\n');
    if (pos) {
        *pos = '\0';
    }
    ESP_LOGI(TAG, "Read from file: '%s'", line);
    //测试完成,卸载
    esp_vfs_spiffs_unregister(conf.partition_label);
    ESP_LOGI(TAG, "SPIFFS unmounted");
}

       首先我们需要包含esp_spiffs.h头文件,这个头文件声明了与spiffs和VFS关联的操作
       
esp_vfs_spiffs_conf_t结构体定义了一些内容配置,其中比较关键的是.base_path = "/spiffs",   //这个可以认为是挂着点,也就是后续可以使用C库函数fopen("/spiffs/...")打开文件的前缀。其余的参数大家看注释便知道是什么意思。 

       然后调用esp_vfs_spiffs_register函数把配置设置进去,这个函数会初始化SPIFFS文件系统,然后把底层对SPIFFS文件系统的读写操作注册到VFS,以及将SPIFFS文件系统挂载到指定的挂载点”/spiffs”。

       esp_spiffs_check函数会对SPIFFS分区进行检查,修复损坏的文件,清理未引用的页面等,官方推荐如果SPIFFS_info返回used大于total,或者获取到任何以下错误代码时:SPIFFS_ERR_NOT_FINALIZED、SPIFFS_ERR_NOT_INDEX、SPIFFS_ERR_IS_INDEX、SPIFFS_ERR_IS_FREE、SPIFFS_ERR_INDEX_SPAN_MISMATCH、SPIFFS_ERR_DATA_SPAN_MISMATCH、SPIFFS_ERR_INDEX_REF_FREE、SPIFFS_ERR_INDEX_REF_LU、SPIFFS_ERR_INDEX_REF_INVALID、SPIFFS_ERR_INDEX_FREE、SPIFFS_ERR_INDEX_LU、SPIFFS_ERR_INDEX_INVALID,都应运行检查。

       当挂载成功后,我们就可以使用fopen、fwrite、rename等这些C语言标准文件操作来对spiffs进行操作了,这部分不再叙述。
       在对操作完成后,使用
esp_vfs_spiffs_unregister卸载掉spiffs文件系统,这个函数的参数如果是NULL,则会对分区表中第一个spiffs分区进行操作,会检测这个分区是否已经挂载,如果挂载了就会卸载掉这个分区,如果没有则返回错误。

最后附上相关资料:

ESP32教程资料链接:
https://pan.baidu.com/s/1kCjD8yktZECSGmHomx_veg?pwd=q8er 
提取码:q8er 

配套源码下载地址:
esp32-board: esp32开发板配套的经典例程

鉴于实验需要开发板的支持,我也设计了一款ESP32开发板,包含部分传感器模块,1.69寸LCD高亮屏,Type-C一键下载,方便大家学习和做各种实验。开发板链接如下:

https://item.taobao.com/item.htm?ft=t&id=802401650392&spm=a21dvs.23580594.0.0.4fee645eXpkfcp&skuId=5635015963649
 

请大家多多支持。

       

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1880517.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

zabbix监控进阶:如何分时段设置不同告警阈值(多阈值告警)

作者 乐维社区&#xff08;forum.lwops.cn&#xff09;乐乐 在生产环境中&#xff0c;企业的业务系统状态并不是一成不变的。在业务高峰时段&#xff0c;如节假日、促销活动或特定时间段&#xff0c;系统负载和用户访问量会大幅增加&#xff0c;此时可能需要设置更高的告警阈值…

网络基础:静态路由

静态路由是一种由网络管理员手动配置的路由方式&#xff0c;用于在网络设备&#xff08;如路由器或交换机&#xff09;之间传递数据包。与动态路由不同&#xff0c;静态路由不会根据网络状态的变化自动调整。 不同厂商的网络设备在静态路由的配置上有些许差异&#xff1b;下面…

qt文件如何打包成一个独立的exe文件

QT官方给我们安装好了打包软件&#xff0c;就在你QT安装的位置 把这个在cmd打开C:\Qt\6.7.1\mingw_64\bin\windeployqt6.exe&#xff08;或复制地址&#xff09; 然后把要打包项目的exe复制到新的空文件夹&#xff0c;再复制他的地址 按回车后生成新文件 再下载打包软件&#…

Arduino IDE 的安装与esp32项目的创建

1打开官网下载 官网 1-1下载完成后安装即可&#xff0c;会弹出一些按安装提示点击安装 2切换为中文模式 2-1点击Flie&#xff0c;在点击图中高亮的位置&#xff0c;进入 2-2选择语言 3创建esp32项目 3-1在线安装&#xff08;不一定成功&#xff0c;可以一直试&#xff09; …

树莓派3B读写EEPROM芯片AT24C256

AT24C256是一个Atmel公司的EEPROM存储芯片&#xff0c;容量是256K个bit&#xff08;也就是32K字节&#xff09;&#xff0c;I2C接口&#xff0c;而树莓派正好有I2C接口&#xff0c;如下图蓝框中的4个IO口&#xff0c; 把AT24C256和这4个口接在一起&#xff0c;这样硬件就准备好…

观察者模式在金融业务中的应用及其框架实现

引言 观察者模式&#xff08;Observer Pattern&#xff09;是一种行为设计模式&#xff0c;它定义了一种一对多的依赖关系&#xff0c;使得多个观察者对象同时监听某一个主题对象。当这个主题对象发生变化时&#xff0c;会通知所有观察者对象&#xff0c;使它们能够自动更新。…

【NodeJs】入门

目录 一、前导 二、 url模块 三、path模块 四、buffer模块 五、fs模块 六、stream流模块 七、os模块 八、crypto模块 九、util模块 十、http模块 nodejs官网 Node.js — 在任何地方运行 JavaScript nmp是Node.js包管理器&#xff0c;用来安装各种库、框架和工具&…

js自定义内容生成二维码,qrcodejs的使用

qrcodejs qrcodejs是基于原生js的文本转换成二维码的库&#xff0c;轻量且使用方法简单&#xff0c;它的实现原理是通过canvas将重新编码的内容绘制在页面元素上&#xff0c; 使用qrcodejs时可以选择引入它的cdn或者使用npm下载 <script type"text/javascript" …

Nacos配置中心客户端源码分析(一): 客户端如何初始化配置

本文收录于专栏 Nacos 推荐阅读&#xff1a;Nacos 架构 & 原理 文章目录 前言一、NacosConfigBeanDefinitionRegistrar二、NacosPropertySourcePostProcessor三、AbstractNacosPropertySourceBuilder总结「AI生成」 前言 专栏前几篇文章主要讲了Nacos作为服务注册中心相关…

vmware安装debian11

安装vmware16 下载镜像 https://repo.huaweicloud.com/debian-cd/ https://repo.huaweicloud.com/debian-cd/11.7.0/amd64/iso-dvd/ 安装 安装完成之后重启&#xff0c;输入账号密码进入&#xff0c;安装ssh服务器即可使用

park unpark

目录 一、基本使用 二、特点&#xff08;与 wait/notify 对比&#xff09; 三、park & unpark 的原理 一、基本使用 1. park 和 unpark 是 LockSupport 中的方法 2. LockSupport.park();// 暂停线程&#xff0c;线程进入 WAIT 状态 3. LockSupport.unpark(被暂停的线…

数据产品经理知识库构建

概述 数据产品经理是企业中负责管理和推动数据产品的专业人员。他们利用数据来辅助决策&#xff0c;优化产品&#xff0c;提升用户体验。用STAR法则&#xff08;Situation, Task, Action, Result&#xff09;来介绍数据产品经理的角色&#xff0c;应该学习的数据产品&#…

Linux安装Node-RED并实现后台运行及开机启动

首先确保系统中已近成功安装Node.js&#xff0c;并保证需要的合适版本&#xff1a; 关于node.js的安装可以参考我的另一篇博文:《AliyunOS安装Node.js》。 然后就可以使用npm工具安装Node-RED了&#xff0c;很简单使用如下命令&#xff1a; sudo npm install -g --unsafe-per…

各维度卷积神经网络内容收录

各维度卷积神经网络内容收录 卷积神经网络&#xff08;CNN&#xff09;&#xff0c;通常是指用于图像分类的2D CNN。但是&#xff0c;现实世界中还使用了其他两种类型的卷积神经网络&#xff0c;即1D CNN和3D CNN。 在1D CNN中&#xff0c;内核沿1个方向移动。1D CNN的输入和…

可信和可解释的大语言模型推理-RoG

大型语言模型&#xff08;LLM&#xff09;在复杂任务中表现出令人印象深刻的推理能力。然而&#xff0c;LLM在推理过程中缺乏最新的知识和经验&#xff0c;这可能导致不正确的推理过程&#xff0c;降低他们的表现和可信度。知识图谱(Knowledge graphs, KGs)以结构化的形式存储了…

模板方法模式在金融业务中的应用及其框架实现

引言 模板方法模式&#xff08;Template Method Pattern&#xff09;是一种行为设计模式&#xff0c;它在一个方法中定义一个算法的框架&#xff0c;而将一些步骤的实现延迟到子类中。模板方法允许子类在不改变算法结构的情况下重新定义算法的某些步骤。在金融业务中&#xff…

Python技术笔记汇总(含语法、工具库、数科、爬虫等)

对Python学习方法及入门、语法、数据处理、数据可视化、空间地理信息、爬虫、自动化办公和数据科学的相关内容可以归纳如下&#xff1a; 一、Python学习方法 分解自己的学习目标&#xff1a;可以将学习目标分基础知识&#xff0c;进阶知识&#xff0c;高级应用&#xff0c;实…

【简易版tinySTL】 哈希表与移动语义

基本概念 哈希表&#xff08;HashTable&#xff09;是一个重要的底层数据结构, 无序关联容器包括unordered_set, unordered_map内部都是基于哈希表实现。 哈希表是一种通过哈希函数将键映射到索引的数据结构&#xff0c;存储在内存空间中。哈希函数负责将任意大小的输入映射到…

谷歌开发者新号上架攻略:开发者实战经验分享

前段时间&#xff0c;不少开发者朋友们在纷纷在吐槽新账号没法上架成功。以前谷歌对新号是真的很严格&#xff0c;但现在情况似乎有所好转。 今天&#xff0c;和大家聊聊如何在新号成功上架上“快人一步”&#xff0c;以及怎样增加账号权重提高上架成功率。 首先&#xff0c;我…

Spring MVC中的DispatcherServlet、HandlerMapping和ViewResolver的作用

在Spring MVC框架中&#xff0c;DispatcherServlet、HandlerMapping和ViewResolver是核心组件&#xff0c;它们各自承担着不同的角色和任务&#xff1a; 1.DispatcherServlet&#xff1a;它是Spring MVC生命周期中的前端控制器&#xff0c;负责接收HTTP请求并将它们分发给相应的…