面试突击:HashMap 源码详解

news2025/1/10 14:27:27

本文已收录于:https://github.com/danmuking/all-in-one(持续更新)

数据结构

JDK1.8 之前

JDK1.8 之前 HashMap 采用 数组和链表 结合的数据结构。如下图:
HashMap-第 2 页.drawio.png
HashMap 将 key 的 hashCode 经过扰动函数处理过后得到 hash 值,然后通过(n - 1) & hash判断当前元素存放的位置(n 指的是数组的长度),如果当前位置存在元素的话,就判断该元素与要存入的元素的 hash 值以及 key 是否相同,如果相同的话,直接覆盖,不相同就通过拉链法解决冲突

什么是拉链法?
拉链法就是将链表和数组相结合。也就是说创建一个链表数组,数组中每一格就是一个链表。若遇到哈希冲突,则将冲突的值加到链表中即可。

JDK1.8 之后

在JDK1.8之中,由于考虑到搜索链表的时间复杂度为 O(n),链表过长的话,遍历链表将会花费过长的时间,因此,JDK1.8中,对 HashMap 的数据结构进行了一定的优化。
当满足一定条件时,会将链表转换为红黑树结构(具体细节见下文),搜索红黑树的时间复杂度为 O(logn),这可以为 HashMap 带来一定的性能提升HashMap-第 2 页.drawio.png
在 JDK1.8 中,还对 HashMap 中计算 hashcode 的函数进行了优化
JDK 1.8 的 hash 方法 相比于 JDK 1.7 hash 方法更加简化。

static final int hash(Object key) {
      int h;
      // key.hashCode():返回散列值也就是hashcode
      // ^:按位异或
      // >>>:无符号右移,忽略符号位,空位都以0补齐
      return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
  }

对比一下 JDK1.7 的 HashMap 的 hash 方法源码.

static int hash(int h) {
    // This function ensures that hashCodes that differ only by
    // constant multiples at each bit position have a bounded
    // number of collisions (approximately 8 at default load factor).

    h ^= (h >>> 20) ^ (h >>> 12);
    return h ^ (h >>> 7) ^ (h >>> 4);
}

JDK1.8 的 hash 扰动次数更少,性能更好。

类图

image.png
HashMap 的继承关系很简单,继承于 AbstractMap 并且是实现了 Cloneable 和 Serializable 接口

public class HashMap<K,V> extends AbstractMap<K,V> 
                implements Map<K,V>, Cloneable, Serializable
  • AbstractMap : 表明它是一个 Map,支持实现 k-v 形式的查询操作
  • Cloneable :表明它具有拷贝能力,可以进行深拷贝或浅拷贝操作。
  • Serializable : 表明它可以进行序列化操作,也就是可以将对象转换为字节流进行持久化存储或网络传输

核心源码解读

重要变量:

// 默认的初始容量是16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认的负载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 当桶上的结点数大于等于这个值时会转成红黑树
static final int TREEIFY_THRESHOLD = 8;
// 当桶上的结点数小于等于这个值时树转链表
static final int UNTREEIFY_THRESHOLD = 6;
// 链表转化为红黑树所需的最小数组容量
// 链表转换为红黑树需要MIN_TREEIFY_CAPACITY和TREEIFY_THRESHOLD两个条件同时满足
static final int MIN_TREEIFY_CAPACITY = 64;
// 存储元素的数组,总是2的幂次倍
transient Node<k,v>[] table;
// 存放元素的个数,注意这个不等于数组的长度。
transient int size;
// 阈值(容量*负载因子) 当size超过阈值时,会进行扩容
int threshold;
// 负载因子
final float loadFactor;

loadFactor 负载因子

loadFactor 负载因子是控制 HashMap 中数组存放数据的疏密程度,loadFactor 影响的是单位长度的数组中存放的数据数量,loadFactor 越大,单位长度的数组中存放的元素就越多,反之,loadFactor 越小,单位长度的数组中存放的元素就越少

loadFactor 太大会导致导致查找元素效率低,因为数据密集,平均链表长度更长。
loadFactor 太小导致数组的利用率低,存放的数据会很分散,很多数组位置空闲
loadFactor 的默认值为 0.75f 是官方给出的一个比较好的临界值。

threshold 阈值

threshold = capacity * loadFactor,当size > threshold的时候,就会进行数组扩容。

Node 节点
// 继承自 Map.Entry<K,V>
static class Node<K,V> implements Map.Entry<K,V> {
       final int hash;// 哈希值,存放元素到hashmap中时用来与其他元素hash值比较
       final K key;//键
       V value;//值
       // 指向下一个节点
       Node<K,V> next;
       Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }
        // 重写hashCode()方法
        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }

        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }
        // 重写 equals() 方法
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
}

初始化

HashMap 中有四个构造方法,其中常用的有三个:

// 默认构造函数。
public HashMap() {
    // 懒加载,初始化的时候不分配空间。
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all   other fields defaulted
 }

 // 指定初始化容量的构造函数
 public HashMap(int initialCapacity) {
     this(initialCapacity, DEFAULT_LOAD_FACTOR);
 }

 // 指定“容量大小”和“负载因子”的构造函数
 public HashMap(int initialCapacity, float loadFactor) {
     if (initialCapacity < 0)
         throw new IllegalArgumentException("Illegal initial capacity: " + initialCapacity);
     // 边界条件处理
     if (initialCapacity > MAXIMUM_CAPACITY)
         initialCapacity = MAXIMUM_CAPACITY;
     if (loadFactor <= 0 || Float.isNaN(loadFactor))
         throw new IllegalArgumentException("Illegal load factor: " + loadFactor);
     this.loadFactor = loadFactor;
     // 初始容量暂时存放到 threshold ,在resize中再赋值给 newCap 进行table初始化
     // tableSizeFor的作用是找到和initialCapacity最接近的2的次幂,
     // 因为 HashMap 的容量一定是2的次幂
     this.threshold = tableSizeFor(initialCapacity);
 }

static final int tableSizeFor(int cap) {
    int n = -1 >>> Integer.numberOfLeadingZeros(cap - 1);
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}

HashMap 同样使用懒加载,第一次初始化的时候不分配数组空间,第一次空间分配发生在以第一次调用 put 方法时

put 方法

步骤

向 HashMap 中添加元素需要经过一下步骤:

  1. 计算 key 的 hash 值,并定位到对应的数组位置
  2. 如果定位到的数组位置没有元素 就直接插入。
  3. 如果定位到的数组位置有元素,就和要插入的 key 比较。如果 key 相同就直接覆盖,如果 key 不相同,就需要遍历所有元素,如果找到相同的 key 就覆盖,否则插入到末尾。
public V put(K key, V value) {
    // 实际调用 putVal 方法
    return putVal(hash(key), key, value, false, true);
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // table未初始化或者长度为0,进行扩容
    // 这里会将 table 赋值给 tab,tab.length 赋值给 n,接下来经常有这种写法
    if ((tab = table) == null || (n = tab.length) == 0)
        n = (tab = resize()).length;
    // (n - 1) & hash 确定元素存放在哪个桶中,桶为空,新生成结点放入桶中(此时,这个结点是放在数组中)
    if ((p = tab[i = (n - 1) & hash]) == null)
        tab[i] = newNode(hash, key, value, null);
    // 桶中已经存在元素(处理hash冲突)
    else {
        Node<K,V> e; K k;
        //快速判断第一个节点table[i]的key是否与插入的key一样,若相同就直接使用插入的值p替换掉旧的值e。
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
        // 判断插入的是否是红黑树节点
        else if (p instanceof TreeNode)
            // 放入树中
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        // 不是红黑树节点则说明为链表结点
        else {
            // 遍历链表,如果在链表中找到相同的key就覆盖,否则添加到尾部
            for (int binCount = 0; ; ++binCount) {
                // 已经到达链表的尾部
                if ((e = p.next) == null) {
                    // 在尾部插入新结点
                    p.next = newNode(hash, key, value, null);
                    // 结点数量达到阈值(默认为 8 ),执行 treeifyBin 方法
                    // 这个方法会根据 HashMap 数组来决定是否转换为红黑树。
                    // 只有当数组长度大于或者等于 64 的情况下,才会执行转换红黑树操作,以减少搜索时间。
                    // 否则,就是只是对数组扩容。
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    // 跳出循环
                    break;
                }
                // 如果找到key相同的节点,结束遍历,接下来将会覆盖旧值
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    // 相等,跳出循环
                    break;
                // 用于遍历桶中的链表,与前面的e = p.next组合,可以遍历链表
                p = e;
            }
        }
        // 表示在桶中找到key值、hash值与插入元素相等的结点
        if (e != null) {
            // 记录e的value
            V oldValue = e.value;
            // onlyIfAbsent为false或者旧值为null
            if (!onlyIfAbsent || oldValue == null)
                //用新值替换旧值
                e.value = value;
            // 访问后回调
            afterNodeAccess(e);
            // 返回旧值
            return oldValue;
        }
    }
    // 结构性修改
    ++modCount;
    // 实际大小大于阈值则扩容
    if (++size > threshold)
        resize();
    // 插入后回调
    afterNodeInsertion(evict);
    return null;
}

get 方法

步骤

从 HashMap 中获取元素的步骤与插入元素的步骤差不多:

  1. 计算 key 对应的 hash 值,计算对应的数组位置
  2. 快速比较对应数组位置的元素是不是要获取的元素,是则返回,不是则遍历对应位置的链表
  3. 遍历链表,如果找到相同的key则返回,否则遍历到最后一个节点返回 null
public V get(Object key) {
    Node<K,V> e;
    return (e = getNode(hash(key), key)) == null ? null : e.value;
}

final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        // 比较第一个元素是否相等,相等则快速返回
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        // 遍历链表
        if ((e = first.next) != null) {
            // 在树中get
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            // 在链表中get
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}

resize 方法

扩容也是 HashMap 中一个重要的知识点。进行扩容,将会遍历原数组中的所有数据,并重新计算其在新数组中的对应位置,将其转移到新数组中。因此 resize 相当耗时,在程序中需要尽量避免。

很多文章会说在resize的过程中会**重新计算hash的值,这是错误的。**在扩容时将会沿用之前的hash,仅仅重新计算在新数组中的位置。

步骤

resize 的流程很简单,大体来说只有两步:

  1. 创建原数组2倍大小的数组
  2. 将原数组元素移动到新数组
final Node<K,V>[] resize() {
    Node<K,V>[] oldTab = table;
    int oldCap = (oldTab == null) ? 0 : oldTab.length;
    int oldThr = threshold;
    int newCap, newThr = 0;
    if (oldCap > 0) {
        // 超过最大值就不再扩充了,就只好随你碰撞去吧
        if (oldCap >= MAXIMUM_CAPACITY) {
            // 同时将阈值设为最大值,之后就不会再扩容了
            threshold = Integer.MAX_VALUE;
            return oldTab;
        }
        // 没超过最大值,就扩充为原来的2倍
        else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY)
            newThr = oldThr << 1; // double threshold
    }
    // 下面两个条件是初始化 HashMap 时触发
    else if (oldThr > 0) // initial capacity was placed in threshold
        // 创建对象时初始化容量大小放在threshold中,此时只需要将其作为新的数组容量
        newCap = oldThr;
    else {
        // signifies using defaults 无参构造函数创建的对象在这里计算容量和阈值
        newCap = DEFAULT_INITIAL_CAPACITY;
        newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
    }
    if (newThr == 0) {
        // 创建时指定了初始化容量或者负载因子,在这里进行阈值初始化,
    	// 或者扩容前的旧容量小于16,在这里计算新的resize上限
        float ft = (float)newCap * loadFactor;
        newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE);
    }
    threshold = newThr;
    @SuppressWarnings({"rawtypes","unchecked"})
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
    table = newTab;
    if (oldTab != null) {
        // 把每个bucket都移动到新的buckets中
        for (int j = 0; j < oldCap; ++j) {
            Node<K,V> e;
            if ((e = oldTab[j]) != null) {
                oldTab[j] = null;
                if (e.next == null)
                    // 只有一个节点,直接计算元素新的位置即可
                    newTab[e.hash & (newCap - 1)] = e;
                else if (e instanceof TreeNode)
                    // 将红黑树拆分成2棵子树,如果子树节点数小于等于 UNTREEIFY_THRESHOLD(默认为 6),则将子树转换为链表。
                    // 如果子树节点数大于 UNTREEIFY_THRESHOLD,则保持子树的树结构。
                    ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                else {
                    Node<K,V> loHead = null, loTail = null;
                    Node<K,V> hiHead = null, hiTail = null;
                    Node<K,V> next;
                    do {
                        next = e.next;
                        // 原索引
                        if ((e.hash & oldCap) == 0) {
                            if (loTail == null)
                                loHead = e;
                            else
                                loTail.next = e;
                            loTail = e;
                        }
                        // 原索引+oldCap
                        else {
                            if (hiTail == null)
                                hiHead = e;
                            else
                                hiTail.next = e;
                            hiTail = e;
                        }
                    } while ((e = next) != null);
                    // 原索引放到bucket里
                    if (loTail != null) {
                        loTail.next = null;
                        newTab[j] = loHead;
                    }
                    // 原索引+oldCap放到bucket里
                    if (hiTail != null) {
                        hiTail.next = null;
                        newTab[j + oldCap] = hiHead;
                    }
                }
            }
        }
    }
    return newTab;
}

resize 如何计算数据在新数组中位置?
if ((e.hash & oldCap) == 0) {
    // 。。。
// 原索引+oldCap
else {
    // 。。。
}

为什么可以使用(e.hash & oldCap) == 0来计算数据在新数组中的位置呢?因为在 HashMap 中数组的长度一定是2的次幂(不知道的话请重新阅读上面的内容),并且扩容时新数组大小是旧数组的 2 倍。因此可以通过 hash 是否可以被2整除来决定元素应该放在原下标还是原下标+旧数组长度。代码中使用e.hash & oldCap位运算来加快计算速度,举个简单的例子来理解一下这个运算:
hash 实际上是一个int类型,转换为二进制就是32个bit。假设现在有一个大小为16的HashMap,数组下标范围就是0~15,因此可以使用hash的最后4个bit进行表示:image.png
在扩容后大小变为16*2=32,数组下标范围为0~31,可以使用hash的最后5个bit进行表示:
image.png
可以发现,每扩容一次就需要多使用一个bit,而根据多使用的这个bit是0还是1就可以将元素分布到原下标原下标+旧数组长度

点关注,不迷路

好了,以上就是这篇文章的全部内容了,如果你能看到这里,非常感谢你的支持!
如果你觉得这篇文章写的还不错, 求点赞👍 求关注❤️ 求分享👥 对暖男我来说真的 非常有用!!!
白嫖不好,创作不易,各位的支持和认可,就是我创作的最大动力,我们下篇文章见!
如果本篇博客有任何错误,请批评指教,不胜感激 !

最后推荐我的IM项目DiTing(https://github.com/danmuking/DiTing-Go),致力于成为一个初学者友好、易于上手的 IM 解决方案,希望能给你的学习、面试带来一点帮助,如果人才你喜欢,给个Star⭐叭!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1879951.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Echarts地图实现:杭州市困难人数分布【动画滚动播放】

Echarts地图实现&#xff1a;杭州市困难人数分布 实现功能 杭州市地区以及散点图分布结合的形式数据展示动画轮播可进去杭州市下级地区可返回杭州市地图展示 效果预览 实现思路 使用ECharts的地图和散点图功能结合实现地区分布通过动画轮播展示数据变化实现下级地区数据的展…

VTK学习日志:基于VTK9.3.0+Visual Studio c++实现DICOM影像MPR多平面重建+V R体绘制4个视图展示功能的实现(二)

前段时间对VTK9.3.0进行了编译&#xff0c;开发了MPRVR实现的demo,显示效果不是很理想&#xff0c;正好趁着周末有时间&#xff0c;再度对之前的程序进行优化和完善&#xff0c;先展示下效果&#xff1a; VTK实现MPRVR四视图 再次讲解下基于VTK的MPRVR实现的简单项目创建过程&a…

HTTPS是什么?原理是什么?用公钥加密为什么不能用公钥解密?

HTTPS&#xff08;HyperText Transfer Protocol Secure&#xff09;是HTTP的安全版本&#xff0c;它通过在HTTP协议之上加入SSL/TLS协议来实现数据加密传输&#xff0c;确保数据在客户端和服务器之间的传输过程中不会被窃取或篡改。 HTTPS 的工作原理 客户端发起HTTPS请求&…

第三天:LINK3D核心原理讲解【第1部分】

第三天:LINK3D核心原理讲解 LINK3D学习笔记 目标 了解LINK3D velodyne64线激光雷达LINK3D质心点提取效果: 分布在车道与墙体的交界处。 课程内容 LINK3D论文精讲LINK3D聚合关键点提取代码讲解LINK3D描述子匹配代码讲解除了ALOAM的线特征、面特征,还有其他点云特征吗,是…

【项目】论坛系统项目自动化测试

论坛系统项目自动化测试 前述一、脑图二、代码编写1.公共类InitAndEnd1.登录页面测试ForumLoginTest正常登录&#xff1a;异常登录&#xff1a; 3.注册页面测试ForumRegisterTest注册成功&#xff1a;注册失败&#xff1a; 4论坛列表页面测试ForumListTest登录状态下&#xff1…

<电力行业> - 《第10课:变电》

1 变电 变电环节&#xff0c;顾名思义就是改变电压的环节&#xff0c;主要是在变电站和变电所完成的。变电站和变电所主要区别在于&#xff1a;变电站比变电所更大。 发电厂的变压器和配电变压器也属于“变电”&#xff0c;但我们在说电网环节时&#xff0c;变电特指电网公司…

python基础:设置代码格式

随着编写的程序越来越长&#xff0c;有必要了解一些代码格式的约定&#xff0c;让你的代码尽可以能易于阅读。 python代码编写规范为PEP8&#xff0c;有兴趣的朋友可以下载观看&#xff0c;这里仅作简要说明。 1、缩进 PEP8建议每级缩进都使用4个空格。多数情况下编程语言的…

无人机智能追踪反制系统技术详解

随着无人机技术的飞速发展&#xff0c;无人机在各个领域的应用越来越广泛。然而&#xff0c;无人机的无序飞行和非法使用也带来了一系列安全隐患和威胁。因此&#xff0c;无人机智能追踪反制系统应运而生&#xff0c;成为维护公共安全和防止无人机滥用的重要工具。本文将详细介…

深度学习评价指标:Precision, Recall, F1-score, mIOU, 和 mDice

在深度学习和机器学习中&#xff0c;评价模型性能是至关重要的一环。本文将详细讲解一些常见的评价指标&#xff0c;包括精确率&#xff08;Precision&#xff09;、召回率&#xff08;Recall&#xff09;、F1-score、平均交并比&#xff08;mIOU&#xff09;和平均Dice系数&am…

ConcurrentHashMap是如何保证线程安全的-put方法简要分析

简介 ConcurrentHashMap 是 Java 中并发编程中常用的线程安全的哈希表&#xff08;HashMap&#xff09;实现。它具有以下几个显著的特点和优点&#xff0c;适合在特定的并发场景中使用&#xff1a; 线程安全性&#xff1a; ConcurrentHashMap 提供了并发访问的线程安全保证&am…

AWT的菜单组件

AWT的菜单组件 前言一、菜单组件的介绍常见的菜单相关组件常见菜单相关组件集成体系图菜单相关组件使用小要点 二、AWT菜单组件的代码示例示例一示例二实现思路 前言 推荐一个网站给想要了解或者学习人工智能知识的读者&#xff0c;这个网站里内容讲解通俗易懂且风趣幽默&…

高考结束,踏上西北的美食之旅

高考的帷幕落下&#xff0c;暑期的阳光洒来&#xff0c;是时候放下书本&#xff0c;背上行囊&#xff0c;踏上一场充满期待的西北之旅。而在甘肃这片广袤的土地上&#xff0c;除了壮丽的自然风光&#xff0c;还有众多令人垂涎欲滴的美食等待着您的品尝。当您踏入甘肃&#xff0…

创建一个vue3+vite+ts项目

目录 创建项目 ​编辑 下载jsx 插件 在根目录在新建.env vue.config.js tsconfig.json tsconfig.node.json 下载ui组件库和路由&#xff08;组件库根据自己的项目需要选择&#xff09; 在根目录下新建views/index.tsx 在根目录下新建router/index.ts 修改App.vue 创建…

【C++】C++ 网店销售库存管理系统(源码+论文)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

K8S之网络深度剖析(一)(持续更新ing)

K8S之网络深度剖析 一 、关于K8S的网络模型 在K8s的世界上,IP是以Pod为单位进行分配的。一个Pod内部的所有容器共享一个网络堆栈(相当于一个网络命名空间,它们的IP地址、网络设备、配置等都是共享的)。按照这个网络原则抽象出来的为每个Pod都设置一个IP地址的模型也被称作为I…

What does the error ‘module ‘langchain‘ has no attribute ‘verbose‘ refer to?

题意&#xff1a;错误 module langchain has no attribute verbose 指的是什么意思&#xff1f; 问题背景&#xff1a; Kind of new to Langchain/Qdrant but Im building a recommendation engine to recommend users based on the contents of their associated PDF files, …

Docker配置远程连接

前置条件&#xff1a;docker所在的服务器开放2375端口 文件&#xff1a;/usr/lib/systemd/system/docker.service 节点ExecStart 追加 -H tcp://0.0.0.0:2375

allure安装教程

1、下载 allure的官网下载地址&#xff1a; https://github.com/allure-framework/allure2/releases 注意&#xff1a;官网时常访问失败&#xff0c;可以访问以下网址&#xff1a; https://repo.maven.apache.org/maven2/io/qameta/allure/allure-commandline/ 选择一个版本&…

岗位实习最终篇(汇总)——人力资源管理系统(包含DDL,DML,视图,简单/复杂查询,触发器语句和存储过程语句)

DDL CREATE TABLE users (user_id INT AUTO_INCREMENT PRIMARY KEY COMMENT 员工ID,username VARCHAR(50) NOT NULL UNIQUE COMMENT 用户名,password VARCHAR(255) NOT NULL COMMENT 密码,first_name VARCHAR(50) NOT NULL COMMENT 名,last_name VARCHAR(50) NOT NULL COMMENT…

leetCode.97. 交错字符串

leetCode.97. 交错字符串 题目思路 代码 class Solution { public:bool isInterleave(string s1, string s2, string s3) {int n s1.size(), m s2.size();if ( s3.size() ! n m ) return false;vector<vector<bool>> f( n 1, vector<bool> (m 1));s1 …